1. (20 pts) Starting with $f(x)=5^{x}$, sketch the graph of $g(x)=4 \cdot 5^{x+1}-3$ in 4 steps (counting $f(x)=5^{x}$ as the first step). Use $x=-1, x=0$, and $x=1$ to find 3 points in the first graph, and show how these 3 points are moved around by each step in the transformation to $g(x)$. Your final graph should also show the y-intercept and, for 5 bonus points, the x-intercept.

2. Let $f(x)=\sqrt{2 x+1}$ and $g(x)=\frac{1}{x-2}$.
a. (8 pts) What is the domain of f ?
b. (7 pts) What is the domain of g ?
c. Determine the following composite functions. You don't need to simplify. In fact, I recommend you do not.
i) $(5 \mathrm{pts})(f \circ g)(x)$
ii) $(5 \mathrm{pts})(g \circ f)(x)$
d. (5 pts) What is the domain of $(f \circ g)(x)$? (Now, you should simplify $(f \circ g)(x)$)
3. (5 pts) What is the domain of $\sqrt{\frac{(x+1)}{(x-2)^{2}(x-5)}}$?
4. (5 pts) Find functions f and g so that $f \circ g=H$, given that $H(x)=\ln \left(x^{2}-3 x+2\right)$
5. (5 pts) Let $f(x)=e^{2 x-5}-7$. Find $f^{-1}(x)$.
6. Find the geometric sums:
a. (5 pts$) 3-6+12-24+\ldots \ldots+192$
b. (5 pts) $\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n-1}$
7. (5 pts) Solve $\ln (x+1)+\ln (x-4)=\ln (6)$.
8. Suppose the half-life of $\mathrm{C}-14$ is 7,000 years. (It isn't, quite, but just suppose...).
a. (10 pts) Derive the exponential decay model, $A(t)=A_{0} e^{k t}$. The trick is to use the half-life to find the relative decay rate, k.
b. (5 pts) How long would it take 100 grams of C-14 to decay to 27 grams (assuming the half-life is as above).
