MAT 121
200 Points

Final Test
Name (5 pts) $\qquad$

1. Find the domain of each of the following:
a. (10 pts) $f(x)=\frac{x^{2}+5}{x^{2}+3 x-10}$
b. $(10 \mathrm{pts}) f(x)=\sqrt{x^{2}+3 x-10}$
c. (10 pts) $f(x)=\ln \left(x^{2}+3 x-10\right)$
2. (10 pts) Graph $g(x)=-2(x-4)^{2}+18$ using the techniques of shifting and reflecting. Start with the graph of the basic function and show all stages. In the final graph, indicate (label as ordered pairs) the $x$ - and $y$-intercepts.
3. Let $f(x)=x^{2}-2 x-8$.
a. (10 pts) Find the zeros of $f$ by factoring.
b. (10 pts) Find the zeros of $f$ by quadratic formula.
c. (10 pts) Find the zeros of $f$ by completing the square.
4. Solve $(x+2)^{2}(x-3)(x-1)^{3} \geq 0$.
5. (10 pts) Form a polynomial with real coefficients that has the given zeros and has degree 6. Please do not expand the polynomial.

Zeros: -4 , multiplicity $1 ; 2$, multiplicity $3 ; 3+2 i$, multiplicity 1.
6. (10 pts) Let $f(x)=x^{4}-11 x^{3}+42 x^{2}-14 x-68$. Use synthetic division to determine $f(3)$.
7. (10 pts) Sketch the graph of $g(x)=\log _{3}(x+2)-3$ by transforming $f(x)=\log _{3}(x)$ $x$-intercept is bonus.
8. (10 pts) Suppose the half-life of carbon-14 is 4700 years. (I think it's 5600 years in the textbook, but let's roll with 4700.) Use this half-life to obtain an exponential decay function

$$
A(t)=A_{0} e^{-k t}
$$

Find $k$ symbolically (in terms of natural logarithm). This answer will be exact. Then estimate $k$ to the $6^{\text {th }}$ decimal place.

Exact: $k=$ Approximate: $k \approx$

Radioactive decay model (using approximate $k$ ): $A(t) \approx$
9. Find the geometric sums:
a. (5 pts) $\sum_{k=1}^{20} 3 \cdot 2^{k-1}$
b. (5 pts) $\sum_{k=1}^{\infty} 3\left(\frac{2}{3}\right)^{k-1}$
10. (10 pts) Solve the system $\begin{aligned} & x+y=7 \\ & 3 x-2 y=8\end{aligned}$ by substitution.
11. (10 pts) Solve the system $\begin{aligned} & x+y=7 \\ & 3 x-2 y=8\end{aligned}$ by elimination. (Matrices are fine.)
12. Evaluate the following:
a. $(5 \mathrm{pts}) \quad P(5,3)$
b. $(5 \mathrm{pts}) \quad C(5,3)=\binom{5}{3}$
13. (10 pts) Expand $(3 x-2 y)^{5}$ using the Binomial Theorem. Final answer less important than initial setup and use of the theorem.

