\qquad

1. (15 pts) Starting with $f(x)=5^{x}$, sketch the graph of $g(x)=-3 \cdot 5^{x+1}+2$ in 4 steps (counting $f(x)=5^{x}$ as the first step). Use $x=-1, x=0$, and $x=1$ to find 3 points in the first graph, and show how these 3 points are moved around by each step in the transformation to $g(x)$. Your final graph should also show the y-intercept and, for 5 bonus points, the x-intercept.

2. For $f(x)=\sqrt{x+6}$ and $g(x)=x^{2}-2 x+2$, determine...:
a. $(10 \mathrm{pts})$... the composite function $(f \circ g)(x)$
b. (10 pts) ... the domain of the composite function $(f \circ g)(x)$
3. (10 pts) What is the domain of $g(x)=\ln (x+6)$?
4. (5 pts) What is the domain of $\sqrt{\frac{(x+5)^{2}}{(x-4)(x-1)^{3}}}$? (This is like a Chapter 3 question!)
5. (5 pts) Find functions f and g so that f o $g=H$, given that $H(x)=\log _{5}\left(x^{2}-4\right)$.
6. (5 pts) Let $f(x)=\log _{5}(2 x+7)-4$. Find $f^{-1}(x)$.
7. (10 pts) Solve without a calculator: $2^{x+3}=5^{x-4}$. All I want is a symbolic answer and the symbolic manipulations you perform to get there. For full credit, your answer should involve a logarithm or two in it.
8. Find the geometric sums:
a. (5 pts) $10-2+\frac{2}{5}-\frac{2}{25}+\ldots . .+\frac{2}{78125}$ (Be careful finding your a, r, and n in $a \cdot r^{n-1}$)
b. $(5 \mathrm{pts}) \sum_{k=1}^{\infty} 10 \cdot\left(\frac{1}{5}\right)^{k-1}$
9. $(10 \mathrm{pts})$ Solve: $\log _{5}(x-4)+\log _{5}(x+2)=\log _{5}(7)$ for x.
10. The half-life of radioactive Millsium is 250 years.
a. (5 pts) Derive the exponential decay model $A(t)=A_{0} e^{k t}$. The trick, here, is to find the relative growth rate, k, based on the doubling time given.
b. (5 pts) How old is a sample of Millsium if only $1 / 3$ of the radioactive isotope remains ?
