
- 1. Let  $f(x) = \frac{2}{3}x 1$  in the following:
  - a. (4 pts) Determine the slope and y-intercept of f.

b. (4 pts) Use the slope and y-intercept to graph f here:



- c. (4 pts) What is the x-intercept of f?
- d. (4 pts) Is f increasing, decreasing or constant?

$$\frac{2}{3}x = 1$$
 $x = \frac{3}{2} \sim (\frac{2}{2}, 0)$ 

Increasing

2. Compute the discriminant for the following quadratic functions. Find how many zeroes does h have, and whether they are real, nonreal, one of each, or what have you.

a. 
$$(4 \text{ pts}) h(x) = 4x^2 - 8x + 5$$
  $6^2 + 4 \cdot 2 = (-8)^2 + (4)(5)$   
=  $64 - 80 = -16$ 

Two nomeal

b. 
$$(4 \text{ pts})$$
  $h(x) = 10x^2 - 19x + 6$ 

62-40c= (-19)2-4(10)6)

=361-240=121 Two real (Cnatham)

3. Let 
$$f(x) = 10x^2 - 19x + 6$$
.

a. (4 pts) Find the zeros of f by factoring.

Factors of 60 whose sum is -19 2(60 (-15)(-4) = 60 2(30 -15 - 4) = -19 3(15)  $5 10x^{2} - 15x - 4x + 6 = 0$  5x(2x-3) - 2(2x-3) = 0 (2x-3)(5x-2) = 0  $x \in \{\frac{3}{2}, \frac{2}{5}\}$ 

b. (4 pts) Find the zeros of f by quadratic formula.

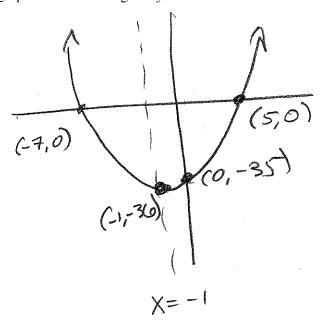
(4 pts) Find the zeros of  $f(x) = x^2 + 2x - 35$  by completing the square.

$$x^{2}+2x+1^{2}=35+1$$
  
 $(x+1)^{2}=36$   
 $x+1=\pm 6$   
 $x=-1\pm 6$   
 $x=-1\pm 6$   
 $x=-1\pm 6$ 

4. (20 pts) Complete the square for  $f(x) = x^2 + 2x - 35$ , and re-write it in the form  $a(x-h)^2 + k$ . Sketch its graph, based on your work. Label the vertex, axis of symmetry, and x- and y-intercepts on your graph. State the range of f.

$$x^{2}+2x+1^{2}-1-35$$

$$(x+1)^{2}-36$$


$$(x+1)^{2}=36$$

$$x+1=\pm 6$$

$$x\in \{-1,5\}$$

$$(h,K)=(-1,-36)$$

$$(0,b)=(0,-35)$$



5. (10 pts) Find the complex zeros of  $f(x) = 4x^2 - 8x + 5$ . Leave your answer in simplified radical form (no calculator stuff). (5 bonus points if you solve it by completing the square)

$$4(x^{2}-2x) = -5$$

$$4(x^{2}-2x+1^{2}) = -5 + 4(1^{2})$$

$$4(x^{2}-2x+1^{2}) = -5 + 4(1^{2})$$

$$4(x-1)^{2} = -5 + 4 = -1$$

$$(x-1)^{2} = -\frac{1}{4}$$

$$(x-1)^{2} = -\frac{1}$$

6. (10 pts) Solve  $10x^2 - 19x \ge -6$ . Express your answer in both set-builder and interval notation. You've already done about half the work on this one, in #3, on page 2.

Solve the absolute value equations and inequalities. (4 pts each). Same work for 7-9. Just interpret the results, differently.

7. 
$$|4x+3|=7$$

8. 
$$|5x-1| > 7$$

9. 
$$|5x-1| \le 7$$

10. 
$$|5x - 1| \le -7$$

11. 
$$|5x-1| > -7$$

12. 
$$|5x-1|=-7$$