1. Let $f(x)=x^{5}-5 x^{4}+7 x^{3}-11 x^{2}+12 x+36$
a. Find all real zeros of f. List these, and circle them. Factor f over the real numbers. Circle this factorization.
b. Find the remaining (2) nonreal zeros of f. List them and circle them. Factor f over the complex numbers.
c. Sketch the graph of f. Label x - and y-intercepts. Don't make your graph too tall or too steep. A smooth polynomial graph is the goal, here, not a slavish obedience to the numbers that loses the essence of its shape.
2. Give a (quick) rough sketch of the following:
a. $\quad f(x)=2(x+4)^{2}$
b. $\quad f(x)=\frac{1}{(x+4)^{3}}$
