\qquad

1. Let $f(x)=-\frac{3}{5} x+2$ in the following:
a. (4 pts) Determine the slope and y-intercept of f.
b. (4 pts) Use the slope and y-intercept to graph f here:

c. (4 pts) Find the x-intercept of f.
d. (4 pts) Is f increasing, decreasing or constant?
2. Compute the discriminant for the following quadratic functions. Find how many zeroes does h have, and whether they are real, nonreal, one of each, or what have you.
a. (4 pts) $h(x)=5 x^{2}-3 x+2$
b. (4 pts) $h(x)=3 x^{2}-5 x+2$
3. Let $f(x)=6 x^{2}-13 x+6$.
a. (4 pts) Find the zeros of f by factoring.
b. (4 pts) Find the zeros of f by quadratic formula.
c. (4 pts) Find the zeros of $f(x)=x^{2}+6 x-5$ by completing the square.
4. (20 pts) Complete the square for $f(x)=x^{2}-10 x+21$, and re-write it in the form $a(x-h)^{2}+k$. Sketch its graph, based on your work. Label the vertex, axis of symmetry, and x - and y-intercepts on your graph. State the range of f.
5. (10 pts) Find the complex zeros of $f(x)=4 x^{2}-12 x+10$. Leave your answer in simplified radical form (no calculator stuff). (5 bonus points if you solve it by completing the square)
6. (10 pts) Solve $6 x^{2}+13 x \geq 6$. Express your answer in both set-builder and interval notation. You've already done about half the work on this one, in \#3, on page 2.

Solve the absolute value equations and inequalities. (4 pts each). Same work for $7-9$. Just interpret the results, differently.
7. $|3 x-5|=2$
8. $|3 x-11|<7$
9. $|3 x-11| \geq 7$
10. $|3 x-11| \geq-7$
11. $|3 x-11| \leq-7$
12. $|3 x-11|=-7$

