1. (10 pts) Form a polynomial in factored form with real coefficients with the given zeros and degree. Please do not expand the polynomial.

Zeros: -2, multiplicity 1; -5, multiplicity 2. Degree 3.
2. (10 pts) Expand $(x-3-2 i)(x-3+2 i)$
3. (10 pts) Use synthetic division to find $P(3)$ if $P(x)=3 x^{5}-2 x^{4}+2 x^{2}-7 x+5$.
4. (10 pts) Divide $f(x)=x^{4}-3 x^{3}+2 x+5$ by $d(x)=x^{2}+3$. Then write the result in the form Dividend $=$ Divisor \cdot Quotient + Remainder.
5. Solve the inequalities:
a. $\left(10\right.$ pts) $3(x-2)^{2}(x+1)(x-1)^{2} \geq 0$
b. (10 pts) $\frac{3(x-2)^{2}}{(x+1)(x-1)^{2}} \geq 0$ (A very different-looking function, but not so very different, when it comes to solving inequalities).
c. (10 pts) What is the domain of $f(x)=\log _{2}\left(\frac{3(x-2)^{2}}{(x+1)(x-1)^{2}}\right)$?
6. (20 pts) Find the real zeros of $f(x)=x^{5}-4 x^{4}+2 x^{3}+14 x^{2}-23 x+10$. Factor f over the set of real numbers.
7. (10 pts) Find the remaining (nonreal) zeros of f and factor f over the set of complex numbers.

