\qquad

Graph:

1. (20 pts) Starting with $f(x)=2^{x}$, sketch the graph of $g(x)=4 \cdot 2^{x+1}-5$ in 4 steps (counting $f(x)=2^{x}$ as the first step). Use $x=-1, x=0$, and $x=1$ to find 3 points in the first graph, and show how these 3 points are moved around by each step in the transformation to $g(x)$. Your final graph should also show the y-intercept and, for 5 bonus points, the x-intercept.

2. (10 pts) Determine which of the following are functions and whether they are one-to-one. So indicate by writing "Yes" or "No" in the appropriate spaces.

Function?
1-to-1?

Function?
1-to-1?

Function?
1-to-1?
3. For $f(x)=\sqrt{x-1}$ and $g(x)=2 x+1$, determine the following composite functions, simplify them, and state their domains:
a. $(5 \mathrm{pts})(f \circ g)(x)$
b. $(5 \mathrm{pts})(g \circ f)(x)$
4. (5 pts) What is the domain of $g(x)=\ln (-2 x+3)$?
5. (5 pts) What is the domain of $\ln \left(\frac{(x-2)^{2}}{(x-3)(x+1)^{3}}\right)$? (This is like a Chapter 3 question!)
6. (5 pts) Let $f(x)=5^{x+1}-4$. Find $f^{-1}(x)$.
7. (5 pts) Find functions f and g so that $f \circ g=H$, given that $H(x)=\ln \left(x^{2}-1\right)$.
8. (5 pts) Evaluate $\log _{2}(96)-\log _{2}(3)$ without a calculator !!
9. (5 pts) Solve without a calculator: $5^{x-1}=3^{x}$. All I want is a symbolic answer and the symbolic manipulations you perform to get there. For full credit, your answer should involve a logarithm or two in it.
10. (5 pts) Write the following as the logarithm of a single expression. Assume that variables represent positive numbers. $3 \log _{5}(x+7)-2 \log _{5}(x-7)+\log _{5} 9$
11. (10 pts) Solve: $\ln (x-4)+\ln (x+1)=\ln (6)$ for x.
12. Find the geometric sums:
a. (5 pts) $2+\frac{2}{3}+\frac{2}{9}+\cdots+\frac{2}{2187}$ (Be careful finding your a, r, and n in $a \cdot r^{n-1}$)
b. (5 pts) $\sum_{k=1}^{\infty} 7 \cdot\left(\frac{3}{5}\right)^{k-1}$
13. The half-life of carbon-14 is (approximately) 5500 years.
a. (5 pts) Derive the exponential decay model $A(t)=A_{0} e^{-k t}$. The trick, here, is to find the decay rate, k, based on the half-life given.
b. (5 pts) Use your model from above to predict the age of an ancient fire pit, if a charcoal sample from the pit contains 20% of its original carbon-14. For ease of solving this problem, you may want to just use a symbolic k until the last step. Round your final answer to the nearest year.

