\qquad

1. Give a (quick) rough sketch of the following:
a. (5 pts) $f(x)=-2(x-5)^{4}$
b. (5 pts) $f(x)=\frac{1}{(x+4)^{3}}$
2. In each of the following, form a polynomial with real coefficients that has the given zeros and degree. Please do not expand the polynomial.
a. (5 pts) Zeros: 3, multiplicity 1; 5, multiplicity 3; - 2, multiplicity 1 Degree 5.
b. (5 pts) Zeros: 3, multiplicity 1; 5, multiplicity 2; $2+3 i$, multiplicity 1. Degree 5.
3. (5 pts) Expand $(x-(2-3 i))(x-(2+3 i))$
4. Let $f(x)=(x-1)(x+3)^{2}(x+1)^{3}$.
a. (5 pts) List each real zero and its multiplicity. Determine whether the graph of $f(x)$ touches or crosses the x-axis at each x-intercept.
b. (5 pts) Determine the power function that $f(x)$ resembles for large $|x|$. This is the End Behavior part of the question. Show the end behavior with a simple figure or diagram.
c. (5 pts) Use the information you reported to obtain a rough graph of $f(x)$. Show all intercepts, including the y-intercept.
5. Solve the inequalities.
a. (5 pts) $(x-1)(x+3)^{2}(x+1)^{3}<0$ (See previous work! If you know how to graph polynomials in factored form, this one is virtually a freebie!)
b. (5 pts) $\frac{(x-1)(x+3)^{2}}{(x+1)^{3}} \geq 0$ (See previous work!)

Bonus (5 pts) What is the domain of $\sqrt{\frac{(x-1)(x+3)^{2}}{(x+1)^{3}}}$?
6. (10 pts) Use Descarte's Rule of Signs and the Rational Zeros Theorem to find all the real zeros of $f(x)=3 x^{5}-17 x^{4}+25 x^{3}+65 x^{2}-128 x+52$. Then use the real zeros to factor f over the real numbers. This is likely to involve an irreducible quadratic factor. I would advise using scratch paper to find the zeros and then do the work with them to break down f in the space below.
7. (5 pts) Based on your work in \#6, above, find all the (real and nonreal) zeros of $f(x)=3 x^{5}-17 x^{4}+25 x^{3}+65 x^{2}-128 x+52$. Use all the zeros to write $f(x)$ as the product of linear factors.
8. (5 pts) Divide $f(x)=2 x^{4}-3 x^{3}+x-3$ by $f(x)=x^{2}-2$. Write your final answer in the form $f(x)=($ Divisor $)($ Quotient $)+$ Remainder
9. (10 pts) Graph the function $R(x)=\frac{2 x^{3}+10 x^{2}+16 x+8}{x^{3}-2 x^{2}-5 x+6}=\frac{\left(2 x^{2}+6 x+4\right)(x+2)}{\left(x^{2}+x-2\right)(x-3)}$. Key features are asymptotes, holes (if any) and intercepts. I partially factored it for you. :o)

