
- 1. Let f(x) = -3x + 4 in the following:
 - a. (5 pts) Determine the slope and y-intercept of f.

b. (5 pts) Use the slope and y-intercept to graph f here:

c. (5 pts) Determine the average rate of change of f.

$$m = -3$$

d. (5 pts) Is f increasing, decreasing or constant?

2. (5 pts) Suppose y varies jointly as m_1 and m_2 and inversely as the square of r. If y = 2 when $m_1 = 3$, $m_2 = 8$, and r = 2 what is y when $m_1 = 15$, $m_2 = 10$, and r = 5?

$$y = k \frac{m_1 m_2}{r}$$

$$2 = k \frac{(3)(8)}{2^2}$$

$$8 = 24 k$$

$$\frac{1}{3} = k$$

$$y = \frac{1}{3} \frac{(15)(10)}{52}$$

$$= \frac{(5)(10)}{25}$$

$$= \frac{1}{2} = \frac{1}{2}$$

- 3. Let $f(x) = x^2 8x 33$.
 - a. (5 pts) Find the zeros of f by factoring.

$$(x-11)(x+3)=0$$
 $(x \in \{-3, 11\}$

b. (5 pts) Find the zeros of f by quadratic formula.

$$2=1, b=-8, c=-33$$

$$b^{2}+3c=(-8)^{2}-4(1)(-33)$$

$$= 64+132$$

$$= 196$$

$$\sqrt{196} = 14$$

$$\sqrt{196} = 14$$

$$x = \frac{-b \pm \sqrt{6^2 420}}{2a} = \frac{+8 \pm 14}{2}$$

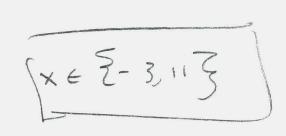
$$x = \frac{-b \pm \sqrt{6^2 420}}{2a} = \frac{-48 \pm 14}{2}$$
c. (5 pts) Find the zeros of f by completing the square. $x \in \mathbb{R}$

c. (5 pts) Find the zeros of f by completing the square.

$$\chi^{2} = 8 \times$$

$$= 33$$

$$\chi^{2} = 8 \times + 4^{2} = 33 + 16$$


$$(x-4)^{2} = 49$$

$$x-4 = \pm 7$$

$$x = 4 \pm 7$$

$$x = 4 \pm 7$$

$$x = 4 \pm 7$$

4. (20 pts) Complete the square for $f(x) = x^2 - 6x + 1$, and re-write it in the form $a(x-h)^2 + k$. Use your result to answer the questions, below. You don't *have* to graph the function, but you'll be answering questions related to its graph, so a rough sketch wouldn't hurt.

$$f(x) = x^{2} - 6x + 1$$

$$= x^{2} - 6x + 3^{2} - 9 + 1$$

$$= (x - 3)^{2} - 8 \xrightarrow{S \in \Gamma} 0$$

$$\Rightarrow (x - 3)^{2} = 8$$

$$x - 3 = \pm \sqrt{8} = \pm 2\sqrt{2}$$

$$x = 3 \pm 2\sqrt{2}$$

$$A = (3 - 2\sqrt{2}, 0)$$

$$B = (3 + 2\sqrt{2}, 0)$$

$$(3, -8)$$

- a. Give the location of the vertex.
- b. State the equation of the axis of symmetry. $\chi = 3$
- c. Give the location of the y-intercept. (0, 1)
- d. Give the location of the x-intercept(s), if any. (Simplify any radicals as appropriate). $(3-2\sqrt{2},0)$ $(3+2\sqrt{2},0)$
- e. State the domain in interval notation. (~ ~ ~ ~ ~ ~)
- f. State the range in interval notation.
- g. State the interval(s) of increase in interval notation. (3)
- h. State the interval(s) of decrease in interval notation (- > 3)

5. Consider the quadratic function $h(x) = 6x^2 - 5x + 3$.

a. (5 pts) Compute the discriminant for h.

$$a=6, b=-5, c=3$$

 $b^2-4ac = (-5)^2-4(6)(3) = 25-72=-47$

b. (5 pts) Based on your answer to part a., describe the nature of the zeros of h. In other words, state how many zeros h has, and whether they're real or nonreal. You do not need to solve the equation.

2 nonreal zeros

6. (10 pts) Find the complex zeros of $f(x) = 4x^2 - 8x + 13$

$$a=4,b=-8, c=13$$

 $b^2-4ac=(-8)^2-4(4)(13)$
 $=64-16(13)=$
 $=16(4)-16(13)$
 $=-16(9)$
 $=-144$
 $\sqrt{-144}=12i$

$$x = -\frac{b \pm \sqrt{b^2 4ac}}{22}$$

$$= \frac{8 \pm 12i}{2(4)} = \frac{4(2 \pm 3i)}{2(4)}$$

$$= \frac{2 \pm 3i}{2} = x$$

7. (10 pts) Solve $x^2 - x > 2$. Express your answer in both set-builder and interval Tour Ways Visuals

 $x^2 - x > 2$

TEST VALUES :

x2-x-2>0

(x-2)(x+1) > 0

(2,00) X=3=7 4 >0 Yos

(-00,-1) (2,00)

is where the Yes's live-

>0" where it's above

 $x \in (-\infty, -1) \cup (2, \infty)$

= {x | x <-1 or x>2 }

8. (5 pts) Solve |2x+3| = 3

2x+3=3 OR 2x+3=-3

2x=0 OR 2x=-6

X=0 0R

x + 7-3,07

9. (5 pts) Solve |3x-5| > 3

3x-5 > 3

OR

3x-54-3

OR

3x < 2

OR

(-00, 3) + [x | x < \frac{2}{3} OR x > \frac{8}{3}]