1. (8 pts) Determine whether the relation below represents a function. What is the domain and what is the range?

$$
\{(-3,6),(7,5),(4,9),(-5,6)\}
$$

2. (5 pts) Determine whether the equation $x^{2}-y=9$ defines y as a function of x. If it does not, show/explain why not.
3. Let $f(x)=\frac{4}{x-4}$. Determine the following, if possible. If not possible, state why:
a. (2 pts) $f(2)$
b. (2 pts) $f(3)$
c. (2 pts) $f(4)$
4. (7 pts) Find the domain of $g(x)=\frac{x^{2}+5 x+17}{x^{2}-x-12}$.
5. (4 pts) Let $f(x)=3 x^{2}$. Find the average rate of change of f from $x=-1$ to $x=1$.
6. Let $f(x)=2 x-6$ and $g(x)=\sqrt{x-3}$.
a. (5 pts) Determine the domain of f.
b. (5 pts) Determine the domain of g.
c. Find the following functions and state the domain of each.
i. $(3 \mathrm{pts})(f+g)(x)$
ii. $(3 \mathrm{pts})(f \cdot g)(x)$
iii. (3 pts) $\left(\frac{f}{g}\right)(x)$
7. Determine algebraically whether each function is even, odd, or neither.
a. (2 pts) $h(x)=4 x^{2}+6 x^{6}-2$
b. (2 pts) $g(x)=3 x^{3}-5$
8. Use the graph of the function f, below, to find:

a. (5 pts) The intercepts (Express answers in ordered pairs.
b. (5 pts) The domain and range.
c. The local extreme points (Give actual points on the graph.)
i. (2 pts) Does f have any local maxima? Where?
ii. (2 pts) Does f have any local minima? Where?
d. The intervals on which f is increasing, decreasing, or constant.
i. (2 pts) f is increasing on
ii. (2 pts) f is decreasing on
iii. (2 pts) f is constant on
9. Graph each of the following functions using the techniques of shifting, compressing, stretching, and/or reflecting. Start with the graph of the basic function and show all stages.
a. (6 pts) $g(x)=-(x-7)^{2}-11$
b. (7 pts) $g(x)=\sqrt{4-x}+5$
10. (8 pts) Sketch the graph of $f(x)=\left\{\begin{array}{cc}x+1 & \text { if }-5 \leq x<1 \\ 1 & \text { if } x=1 \\ x-1 & \text { if } 1<x \leq 3\end{array}\right.$. Include all intercepts. State the domain and range.
11. (6 pts) Determine the piecewise-defined function g from its graph, below.

