MAT 121
200 Points

Final Test
Name (5 pts)

1. Find the domain of the following:
a. (10 pts) $f(x)=\frac{x^{2}+5 x+17}{x^{2}-5 x-14}$
b. (10 pts) $f(x)=\sqrt{x^{2}-5 x-14}$
c. (10 pts) $f(x)=\ln \left(x^{2}-5 x-14\right)$
2. (10 pts) Graph $g(x)=-(x+5)^{2}+3$ using the techniques of shifting and reflecting. Start with the graph of the basic function and show all stages. In the final graph, indicate (label as ordered pairs) the x - and y-intercepts.
3. Let $f(x)=x^{2}-6 x+8$.
a. (10 pts) Find the zeros of f by factoring.
b. (10 pts) Find the zeros of f by quadratic formula.
c. (10 pts) Find the zeros of f by completing the square.
4. Let $f(x)=(x+2)^{2}(x-3)(x-1)^{3}$.
a. (5 pts) List each real zero and its multiplicity. Determine whether the graph of $f(x)$ touches or crosses the x-axis at each x-intercept.
b. (5 pts) Determine the power function that $f(x)$ resembles for large $|x|$. This is the End Behavior part of the question.
c. (5 pts) Use the information you reported to obtain a rough graph of $f(x)$. Show all intercepts, including the y-intercept.
5. (10 pts) Form a polynomial with real coefficients that has the given zeros and has degree 6. Please do not expand the polynomial.

Zeros: -4 , multiplicity $1 ; 2$, multiplicity $3 ; 3+2 i$, multiplicity 1.
6. (10 pts) Let $f(x)=x^{4}-11 x^{3}+42 x^{2}-14 x-68$. Use synthetic division to determine $f(1)$.
7. (10 pts) Evaluate $\log _{2}(96)-\log _{2}(3)$ without a calculator !! (This is one that I mistyped on Test 4. But now it should work the way it ought to have worked.)
8. (10 pts) The half-life of carbon-14 is (approximately) 5500 years. (I think it's 5600 years in the textbook, but let's roll with 5500.) Use this half-life to obtain an exponential decay function

$$
A(t)=A_{0} e^{-k t} .
$$

Find k symbolically (in terms of natural logarithm). This answer will be exact. Then estimate k to the $6^{\text {th }}$ decimal place.

Exact: $k=\quad$ Approximate: $k \approx$
Population model (using approximate k): $\quad A(t) \approx$
9. Find the geometric sums:
a. $\left(5\right.$ pts) $\sum_{k=1}^{50} 3(1.2)^{k-1}$
b. (5 pts) $\sum_{k=1}^{\infty} \frac{3}{4}\left(\frac{2}{5}\right)^{k-1}$
10. (10 pts) Solve the system $\begin{aligned} & x+y=7 \\ & 3 x-2 y=8\end{aligned}$ by substitution.
11. (10 pts) Solve the system $\begin{aligned} & x+y=7 \\ & 3 x-2 y=8\end{aligned}$ by elimination. (Matrices are fine.)
12. (5 pts) If $n(A)=10, n(B)=15$, and $n(A \cup B)=20$, what is $n(A \cap B)$?
13. (5 pts) How many are in B or C, but not in A?

Answer: \qquad
14. (10 pts) Graph the system of inequalities:

$$
\begin{aligned}
x+y & =7 \\
5 x-2 y & \leq 20 \\
x & \geq 0 \\
y & \geq 0
\end{aligned}
$$

15. Evaluate the following:
a. $(5 \mathrm{pts}) \quad P(5,3)$
b. $(5 \mathrm{pts}) \quad C(5,3)=\binom{5}{3}$
16. $(10 \mathrm{pts})$ Expand $(2 x-3 y)^{5}$
