\qquad

1. (5 pts) Determine whether the given function is linear or nonlinear. If it is linear, determine the slope.

\boldsymbol{x}	$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$
-2	1
0	7
1	10

2. Let $f(x)=4 x-5$ in the following:
a. (5 pts) Determine the slope and y-intercept of f.
b. (5 pts) Use the slope and y-intercept to graph f here:

c. (5 pts) Determine the average rate of change of f.
d. (5 pts) Is f increasing, decreasing or constant?
3. (5 pts) Suppose y varies jointly as the square of x and the cube of z. If $y=27$ when x $=2$ and $z=3$, what is y when $x=3$ and $z=-1$?
4. Let $f(x)=12 x^{2}-7 x-10$.
a. (5 pts) Find the zeros of f by factoring.
b. (5 pts) Find the zeros of f by quadratic formula.
c. (5 pts) Find the zeros of $f(x)=2 x^{2}-3 x-5$ by completing the square.
5. $f(x)=(x-3)^{2}-7$
a. (5 pts) Find the zeros of $f(x)$ using the Square Root Method.
b. (5 pts) What are the x-intercepts of the graph of $f(x)$?
6. (10 pts) Graph $f(x)=x^{2}-6 x-11$. I expect to see all of the following information on (or next to) your graph. You may use completing the square or the $-\frac{b}{2 a}$ method.:
i. vertex
ii. axis of symmetry
iii. y-intercept
iv. $\quad x$-intercept(s), if any
v.domain
vi.range
vii.interval(s) of increase
viii.interval(s) of decrease
7. Consider the quadratic function $h(x)=5 x^{2}-6 x+3$.
a. (5 pts) Compute the discriminant for h.
b. (5 pts) Based on your answer to part a., describe the nature of the zeros of h. In other words, state how many zeros h has, and whether they're real or nonreal. You do not need to solve the equation.
8. (10 pts) Find the complex zeros of $f(x)=x^{2}-5 x+11$
9. (10 pts) Solve $x^{2}<14-5 x$. Express your answer in both set-builder and interval notation.
