\qquad

1. (20 pts) Starting with $f(x)=\log _{3}(x)$, sketch the graph of $g(x)=5 \cdot \log _{3}(4 x+24)+3$ in 5 steps (counting $f(x)=\log _{2}(x)$ as the first step). Use $x=\frac{1}{3}, x=1$, and $x=3$ to find 3 points in the first graph, and show how these 3 points are moved around by each step in the transformation to $g(x)$.
2. Find the exact x - and y-intercepts for $g(x)$ from \#1. That means no decimal approximations. I'm looking for the symbolic manipulations that you will need at the next level.
a. (4 pts) x-intercept: $A=$
b. $(4 \mathrm{pts}) y$-intercept: $B=$
c. (2 pts) Label your final graph for $\# 1$ with the intercepts labeled with A and B.
3. (5 pts) Find the inverse, $g^{-1}(x)$, for $g(x)$ in \#1. The moves are very similar to what you did in \#2a.
4. Let $f(x)=\sqrt{x-24}$ and $g(x)=x^{2}+7 x-18$.
a. (5 pts) What is the domain of f ?
b. (5 pts) What is the domain of g ?
c. (5 pts) Determine $\left(\frac{f}{g}\right)(x)$. (Sometimes this is just called $\frac{f}{g}$ in the text.)
d. (5 pts) What is the domain of $\left(\frac{f}{g}\right)(x)$?
e. (5 pts) Determine $(f \circ g)(x)$ (Again, sometimes just called $f \circ g$).
f. (5 pts) What is the domain of $f \circ g$?
5. The next two domain questions are very closely related.
a. (5 pts) What is the domain of $\sqrt{\frac{(x-2)^{4}(x+8)}{(x+4)^{3}(x-5)^{3}}}$?
b. (5 pts) What is the domain of $\log _{11}\left(\frac{(x-2)^{4}(x+8)}{(x+4)^{3}(x-5)^{3}}\right)$?
6. (10 pts) Solve $\ln (x+9)+\ln (x-2)=\ln (24)$. Give the exact solution(s).
7. Suppose the half-life of C-14 is 4900 years. (It isn't, quite, but just suppose...).
a. (10 pts) Derive the exponential decay model, $A(t)=A_{0} e^{k t}$. The trick is to use the half-life to find the relative decay rate, k.
b. (5 pts) How old is a sample of charcoal from a prehistoric fire pit, if 66% of the $\mathrm{C}-14$ has decayed (i.e., 34% is left.) ? Round to the nearest year in your final answer. If it makes it easier for you, use an initial mass of 100 g of radioactive $\mathrm{C}-14$ and a final mass of 53 g of the radioactive material. It's the same thing.

Bonus Answer up to four (4) 5-pointers. That's a total of 20 bonus points possible. Points to be had. Standards are high.

B 1 (5 pts) Solve the absolute value inequality: $|-5 x+2|-7 \geq-5$.

B 2 (5 pts) Re-write $f(x)=5 x^{2}-2 x-11$ in the form $a(x-h)^{2}+k$.

B 3 (5 pts) Solve the exponential equation $3 \cdot 5^{x}=10 \cdot \pi^{x}$. Give the exact answer in terms of natural logarithms.

B 4 (5 pts) Sketch the graph of $R(x)=\frac{(x-2)^{4}(x+8)}{(x+4)^{3}(x-5)^{3}}$. Your sign pattern from \#5a is a great assist.
B 5 (5 pts) Sketch the graph of $Q(x)=\sqrt{\frac{(x-2)^{4}(x+8)}{(x+4)^{3}(x-5)^{3}}}$. Your graph from $\mathbf{B 4}$ is a great assist.

B 6 (5 pts) Sketch the graph of $g(x)=-5 \cdot 3^{3 x+9}+11$.

B 7 (Super-Bonus) A hard-working teacher borrows \$80,000 to buy a house on a 30-year mortgage, which they're amortizing with monthly payments (at the end of each month) at 4.5% annual percentage rate, compounded daily. I want you to figure out their monthly payments, by answering the following:
a) (5 pts) Given the Future Value of an annuity is given by $S=R\left[\frac{(1+i)^{n}-1}{i}\right]$, and the Future Value of a lump sum drawing interest is given by $A=P(1+i)^{n}$. Solve the equation $A=S$ for R. This will give the payment in symbolic form.
b) (5 pts) Supply the values i, n, and P from the word problem and give me the monthly payment, to the nearest penny.

