Remember to use separate paper for everything except your name. Leave a margin in the top left corner. Spread out your work. Use only one column for your work. Submit problems in order!!!

1. (10 pts) Form a polynomial of minimal degree in factored form that has real coefficients (after expanding) and will have the given zeros. Do not expand your polynomial. Leave it factored! If you run out of room, you're doing it wrong!
$x=5-2 i$, multiplicity $1 ; \quad x=-5$, multiplicity $4 ; \quad x=2$, multiplicity 2.
2. (10 pts) Use synthetic division to find $P(3)$ if $P(x)=3 x^{5}-3 x^{3}+8 x^{2}-10 x+11$
3. (5 pts) Represent the work you just did on the previous problem by writing $P(x)$ in the form Dividend $=$ Divisor $\bullet$ Quotient + Remainder.
4. Suppose $f(x)=(2 x-1)(x+3)(x-5)(x+2)^{2}=2 x^{5}+3 x^{4}-40 x^{3}-117 x^{2}-52 x+60$. I'm showing you both factored and expanded form to help you answer the following:
a. (10 pts) Solve the inequality $f(x) \geq 0$. Your sign pattern for this one will be helpful in the next two. You just have to interpret what you're seeing.
b. (10 pts) Provide a rough sketch of $f$, using its zeros, their respective multiplicities and its end behavior. Include $x$ - and $y$-intercepts. Your graph should be smooth. Un-exaggerate the vertical for a better quality graph.
c. (5 pts) What is the domain of $g(x)=\sqrt{\frac{(x+3)(x-5)}{(2 x-1)(x+2)^{2}}}$ ?
5. Let $f(x)=9 x^{5}+6 x^{4}-53 x^{3}-10 x^{2}+68 x-56$
a. (5 pts) Use Descartes' Rule of Signs to determine the possible number of positive and negative zeros of $f$.
b. (5 pts) List all possible rational zeros of $f$.
c. (Bonus 5 pts) Find the smallest possible integer bounds on positive and negative zeros.
6. (10 pts) Find the real zeros of $f(x)=9 x^{5}+6 x^{4}-53 x^{3}-10 x^{2}+68 x-56$. Then factor $f$ over the set of real numbers. This should involve an irreducible quadratic factor.
(If things go haywire, come up with a plausible-looking polynomial, in factored form, with the right number of real roots and 2 nonreal roots. The 2 nonreal roots will still be living inside the irreducible quadratic factor, so you'll have to make up a quadratic factor with nonreal zeros).
7. (5 pts) Find the remaining (nonreal) zeros of $f$ and factor $f$ over the set of complex numbers. This step requires breaking down the quadratic piece that's irreducible over the real numbers, and incorporating the result into your answer for the \#6. The fundamental theorem tells us that nothing is irreducible over the complex numbers.
(You can still get full credit for this one, even if things went haywire, in \#6, if you solve the depressed equation, correctly, and display your plausible-looking follow-up to your plausible-looking answer to \#6. The more you know about what you're pointing towards, the more points you'll earn.)
8. (5 pts) You don't need to graph $R(x)=\frac{3 x^{3}-14 x^{2}-7 x+10}{x^{2}+x-6}$, here, but I do want to see its asymptotes.
9. (10 pts) Sketch the graph of $F(x)=\frac{3 x^{2}-17 x+10}{x^{2}+x-6}$ Show all asymptotes and intercepts.

## ANSWER ANY TWO (2) OF THE FOLLOWING, FOR UP TO 20 BONUS POINTS!!!

B1 (10 pts) Form a polynomial of minimal degree in factored form that has rational coefficients (after expanding) and will have the given zeros. Do not expand your polynomial. Leave it factored! If you run out of room, you're doing it wrong.


Zeros: $x=3-\sqrt{2}$, multiplicity 2;
$x=2+3 i$, multiplicity 1 ;
$x=3$, multiplicity 4 .
B2 Solve both of the following absolute value inequalities.
a. (5 pts) $|2 x-7|+8>9$
b. (5 pts) $|3 x+1|+13<8$

B3 (10 pts) Sketch the graph of $R(x)=\frac{3 x^{3}-14 x^{2}-7 x+10}{x^{2}+x-6}$.
a. You already found $R(x)$ 's asymptotes in \#8.
b. One of $R(x)$ 's $x$-intercepts is $(5,0)$.

B4 (10 pts) Sketch the graph of $G(x)=\frac{3 x^{3}-14 x^{2}-7 x+10}{x^{3}+2 x^{2}-5 x-6}$. Hint: $G(x)$ looks exactly like $F(x)$, from \#9, except it has a hole. For this one, you may simply add the hole for $G$ 's graph to your graph of $F$ in \#9.

B5 (10 pts) If $f(x)=\sqrt{x+11}$ and $g(x)=\frac{2}{x-6}$, what is the domain of $f \circ g$ ?

