121 FINAL FALL'16
(1) (a)

$$
\begin{aligned}
& x^{2}-5 x-14=(x-7)(x+2) \stackrel{\text { SET }}{=} 0 \\
& x \in\{-2,7\}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& x^{2}-5 x-14=0 \\
& x^{2}-5 x \\
& x^{2}-5 x+\left(\frac{5}{2}\right)^{2}=14+\frac{25}{4} \\
& \left(x-\frac{5}{2}\right)^{2}=\frac{56}{4}+\frac{25}{4}=\frac{81}{4} \\
& x-\frac{5}{2}= \pm \sqrt{\frac{81}{4}}= \pm \frac{9}{2} \quad D^{\frac{14}{2}}=7 \\
& x=\frac{5}{2} \pm \frac{9}{2}=\frac{5 \pm 9}{2} \quad 8-\frac{4}{2}=-2 \\
& x \in\{-2,7\}
\end{aligned}
$$

(C)

$$
\begin{aligned}
& a=1, b=-5, c=-14 \\
& b^{2} 4+2=(-5)^{2}-4(1)(-14) \\
& =25+56=81 \\
& x=\frac{-6 t \sqrt{b^{2}+a C}}{\frac{2 a}{x+\{-3,7\}}}=\frac{5 \pm 9}{2} b^{\frac{14}{2}}=7
\end{aligned}
$$

121 FINAL
(b) $|-5 x+4| \geq 7$

$$
\begin{array}{ll}
|-5 x+4| \geq \\
-5 x+4 \geq 7 & \text { OR } \quad-5 x+4 \leq-7 \\
-5 x \leq-11
\end{array}
$$

$$
x \in\left\{\begin{array}{lll}
-5 x \geq 3 & & \left.-5 x \geq \frac{\pi}{5}\right\} \\
\left\{x \left\lvert\, x \geq-\frac{3}{5}\right.\right. & \text { or } \quad x &
\end{array}\right.
$$

$$
-5 x \geq 3
$$

$$
\left\{\begin{array}{l}
\left\{x \left\lvert\, x=-\frac{3}{5}\right.\right. \\
=\frac{-3}{5} \quad \frac{11}{5} \\
=\left(-\infty,-\frac{3}{5}\right] \cup\left[\frac{11}{5}, \infty\right)
\end{array}\right.
$$

$$
\begin{aligned}
& \text { (2) }|-5 x+1|<7 \\
& -5 x+4<7 \text { and }-5 x+4>-7 \\
& -5 x<3 \quad-5 x>-11 \Rightarrow x \in \ldots \\
& \text { in }\left\{x \left\lvert\, x>-\frac{3}{5}\right. \text { and } \quad x<\frac{11}{5}\right\} \\
& 10 \mathrm{pts} \\
& =\frac{\left.N^{N} / y\right)_{5}^{N} y}{\frac{11}{5}} \rightarrow \text { AND } \\
& =\left(-\frac{3}{5}, \frac{11}{5}\right)
\end{aligned}
$$

121 FIMAL
(3) $f(x)=\sqrt{x+5}, g(x)=x^{2}-4 x-5$
(2) Need $x+5 \geq 0$

$$
\Rightarrow D=(\{x \mid x \geq-5\}=[-5, \infty)
$$

(b) $g$ is a polynornial $D=\{x \mid x \in \mathbb{R}\}=(-\infty, \infty)$
c)

$$
\begin{aligned}
(f \circ g)(x) & =\sqrt{x^{2}-4 x-5}+5 \\
(f \circ g)(x) & =\sqrt{x^{2}-4 x}
\end{aligned}
$$

(d) $\mathscr{P}(f \circ g)=\{x \mid x \in D(g)$ and $g(x) \in D(f)\}$

$$
P(f \circ g)=\{x \mid x \in \infty)=(-\infty, \infty) \text {, so just wonied about }
$$

$$
g(x) \in \theta(f) \text { pait }
$$

$$
g(x) \geq-5
$$

$$
\Rightarrow \sqrt{0(f \circ g)}
$$

$$
\begin{aligned}
& x^{2}-4 x-5 \geq-5 \\
& x^{2}-4 x \geq 0 \\
& x(x-4) \geq 0
\end{aligned}
$$

$$
=(-\infty, 0] \cup[4, \infty)
$$

$$
\begin{aligned}
& =(-\infty, 0) \\
& =\{x \mid x \leq 0 \text { or } x \geq 4\}
\end{aligned}
$$


(5) $f(x)=\sqrt{(x+6)(x-1)^{4}(x-6)}$
$\Rightarrow d(f)$ needs $(x+6)(x-1)^{4}(x-6) \geq 0$


$$
\begin{array}{ll} 
& \begin{array}{ll}
-6 \\
=0 & =0
\end{array} \\
\rightarrow(8)=(-\infty,-6] \cup\{1\} \cup[6, \infty)
\end{array}
$$

(6) $f(x)=\sqrt{\frac{(x+6)(x-6)}{(x-1)^{4}}} \Rightarrow$

Of) nets $\frac{(x+6)(x-6)}{(x-1)^{4} y} \geq 0$


ILI Final
(7) $p(x)=2 x^{5}-5 x^{4}-2 x^{2}+6 x-13$

We find $P(2)$ :
(8) $3,2, \frac{4}{3}, \ldots, \frac{250}{2187}$

$$
\begin{aligned}
\begin{aligned}
2=3, & r
\end{aligned} \quad \begin{aligned}
& n=9 \frac{2}{3} \\
& n \frac{256}{2}=\frac{2}{3} \\
& n=3 \cdot\left(\frac{2}{3}\right)^{n-1} \\
&=\frac{2^{8}}{3^{7}}=3 \cdot \frac{2^{8}}{3^{8}} \\
&=3 \cdot\left(\frac{2}{3}\right)^{8} \Rightarrow \\
& n-1=8 \\
& n-9
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { So, } \sum_{12}^{9} 3 \cdot\left(\frac{2}{3}\right)^{k-1}=3\left(\frac{1-\left(\frac{2}{3}\right)^{9}}{1-\frac{2}{3}}\right) \\
& \left.=\frac{3\left(\frac{1-\frac{512}{19683}}{\frac{1}{3}}\right)=3\left(\frac{19683-512}{19683}\right.}{\frac{1}{3}}\right) \\
& \left.=9\left(\frac{19171}{19683}\right)=\frac{19181}{2107}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 212-5 \quad 0 \quad-2 \quad 6 \quad-13\left(10 p^{\beta}\right. \\
& \begin{array}{ccccc}
4 & -2 & -4 & -12 & -12 \\
\hline 2-1 & -2 & -6 & -6 & -25=P(2)
\end{array}
\end{aligned}
$$

121
Fimal
(9)

$$
\sum_{k=1}^{\infty} 5 \cdot\left(\frac{2}{3}\right)^{k-1} \quad 2=5, r=\frac{2}{3}, n \rightarrow \infty,
$$

(10) $A=P(1+i)^{n}=5000\left(1+\frac{.05}{52}\right)^{(52)(7)}$

$$
\begin{aligned}
& i=\frac{05}{12} \quad m=52 \\
& n=(52)(7) \quad t=7
\end{aligned}
$$

(1)

$$
\begin{aligned}
& A=F V \\
& P(1+i)^{n}=R\left(\frac{(1+i)^{n}-1}{i}\right) \\
& P=R\left(\frac{\left.1-(1+i)^{-n}\right)}{i}\right) \\
& \approx 1230,074.14
\end{aligned}
$$

Diviche by $(1+i)^{n}$ to is lelo the $P$.

$$
\begin{aligned}
& i=\frac{.045}{12} \\
& n=(12)(5) \\
& R=5,000
\end{aligned}
$$

(12) Wl gapphi.

121 FINAL
(12) $g(x)=5 \log _{6}(3 x+12)-11$


$$
x=0
$$

(2) $5 f(x)$


$x=-12$


121 FInAR
(12) (b)

$$
\begin{array}{cc}
x-i t=g(x)=0 & y-5 t: g(0)=? \\
5 \log _{6}(3 x+12)-11=0 & g(0)=5 \log _{6}(12)-11 \\
5 \log _{6}(3 x+12)=11 & \approx 11 \\
\log _{6}(3 x+12)=\frac{11}{5} & B=\left(0,5 \log _{6}(12)-11\right. \\
3 x+12=6^{11 / 5} \\
3 x=6^{115}-12
\end{array}
$$

$$
x=\frac{1}{3} \cdot 6^{11 / 5}-4
$$

$$
A=\left(\frac{1}{3} \cdot 6^{11 / 5}-4,0\right)
$$

$$
\approx(13.17162897,0)
$$

BI

$$
\begin{aligned}
& f(x)=3^{5 x+2}+7 \\
& 3^{5 y+2}+7=x \\
& 3^{5 y+2}=x-7 \\
& \log _{3}(1)=\log _{3}()
\end{aligned}
$$

$$
\begin{aligned}
5 y+2 & =\log _{3}(x-7) \\
5 y & =\log _{3}(x-7)-2 \\
y & =\frac{\log _{3}(x-7)-2}{5} \\
& =f^{-1}(x)(5 p)
\end{aligned}
$$

121 FIMAL
B2 $\frac{1}{2}$-life is 6000 y 2 s
(a) $A_{0} e^{6000 k}=\frac{1}{2} A_{0}$

$$
\begin{aligned}
& e^{600 k}=\frac{1}{2} \\
& 6000 k=\ln (1 / 2)=-\ln 2 \\
& k=-\frac{\ln 2}{6000}
\end{aligned}
$$

(b) $80 \%$ of $\mathrm{C}-14$ decayed

$$
\begin{aligned}
& 80 \% \text { lemains } \\
& 20 \%{ }^{2} e^{k t}=.2 A_{0} \\
& e^{k t}=.2 \\
& k t=\ln 2 \\
& t=\frac{\ln 2}{k} \approx 13,931.56857
\end{aligned}
$$

$$
\approx 113,93^{2} \mathrm{p}^{1 s}
$$

21 Fimal
B3

$$
r(x)=-3 \sqrt{2(x+4)}+27
$$

$$
(-4,27)
$$

$$
r(0)=-3 \sqrt{6}+27
$$



$$
=-3.2 \sqrt{2}+27
$$

$$
\begin{aligned}
& =-3.2 \sqrt{2}+27>0 \\
& =-6 \sqrt{2}+27>3)
\end{aligned}
$$

$x$

$$
r(x)=0
$$

$$
\begin{aligned}
& r(x)=0 \\
& -3 \sqrt{2 x+8}+27-0
\end{aligned}
$$

(84) $4 x^{2}-3 x+1$

$$
\begin{aligned}
& -3 \sqrt{2 x+8}=-27 \\
& -3 \sqrt{2 x+8}=9
\end{aligned}
$$

$$
\left.\begin{array}{rl}
4\left(x^{2}-\frac{3}{4} x\right)+1 & 2 x+8  \tag{13}\\
=4\left(x^{2}-\frac{3}{4} x+\left(\frac{3}{8}\right)^{2}\right)+1-4\left(\frac{9}{64}\right) & 2 x
\end{array}\right)
$$

$$
=4\left(x^{2}-\frac{4}{4} x+4\left(x-\frac{3}{8}\right)^{2}+7 / 16\right.
$$

$$
1-4\left(\frac{9}{64}\right)
$$

$$
\begin{aligned}
& 1-4\left(\frac{9}{64}\right) \\
& =1-\frac{9}{16}=\frac{16-9}{16}=\frac{7}{16}
\end{aligned}
$$

121 FINAL
Le $x=$ of hows John works.
Then BiOl works $x+2$ hours, since Tom started 2 hrs late. So work by John t wonk by $B$ ill $=1 \mathrm{~J}$

$$
\begin{gathered}
\frac{1}{6} x+\frac{1}{11}(x+2)=1 \\
11 x+6(x+2)=66 \\
11 x+6 x+12=66 \\
17 x=54 \\
x=\frac{54}{17} \text { hrs }
\end{gathered}
$$

23.1765 hrs

$$
x=\frac{\frac{54}{17} \text { hrs }}{x+2=\frac{54}{17}+\frac{34}{17}}=\frac{88}{17} \text { hrs for Bill }
$$

121 Final
(7) Common mistake is to om. 7 the $x^{3}$ plaveholdeip

Enough students missed this one, I did it "right" except for that one mistake, to help award partial credit to those who missed the placeholder.

| 2] 2-5 -2 6 -13 <br> 4 -2 -8 -4 |
| :--- |
| $2-1$ |$\frac{-4}{}-2$| $-17=P(2)$ |
| :--- | :--- |

\#8) $n=8$ most common esther.

$$
\begin{aligned}
& \text { Look: } 3\left(\frac{2}{3}\right)^{n-1}=\frac{256}{2+87}=\frac{2^{8}}{3^{7}}=3\left(\frac{2^{8}}{3^{8}}\right) \\
& =3\left(\frac{\pi}{3}\right)^{8} \Rightarrow \\
& n-1=8 \\
& \Rightarrow n=91 \\
& \text { So, } 3\left(\frac{1-\left(\frac{2}{3}\right)^{9}}{1-\frac{2}{3}}\right), e^{\text {te. }} \\
& =\frac{6305}{729} \approx 8.648834019
\end{aligned}
$$

