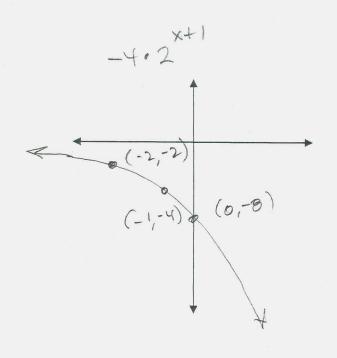
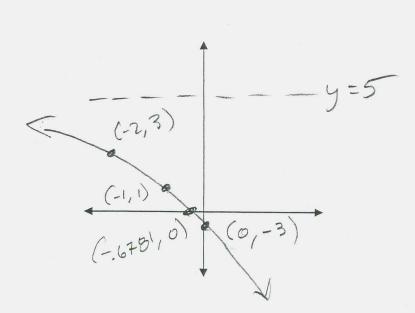

Test 4, Chapter 4


Name	<	EY		


Work 10 of the following 12 problems. Omit two (2). If you omit a problem, write OMIT in the space provided. Otherwise, I'll grade the first 10 problems I come to, whether you work them or not.

1. (20 pts) Starting with $f(x) = 2^x$, sketch the graph of $g(x) = -4 \cdot 2^{x+1} + 5$ in 4 steps (counting $f(x) = 2^x$ as the first step). Use x = -1, x = 0, and x = 1 to find 3 points in the first graph, and show how these 3 points are moved around by each step in the transformation to g(x). Your final graph should also show the *y*-intercept and, for 5 bonus points, the *x*-intercept (See #5b).

2. (10 pts) Find the inverse of the function $g(x) = -3^{1-x} + 7$

$$-3^{1-y} = x - 7$$

$$-3^{1-y} = x - 7$$

$$3^{1-y} = 7 - x$$

$$1 - log_3(7 - (-3^{1-x} + 7))$$

$$1 - y = log_3(7 - x)$$

$$- y = log_3(7 - x) - 1$$

$$y = 1 - log_3(3^{1-x})$$

$$= 1 - (1 - x) = x$$

$$y = 1 - log_3(7 - x) = F^{-1}(x)$$

3. (10 pts) Solve $\ln(x-4) + \ln(x+1) = \ln(6)$ for x.

$$l_{n}(x-4)(x+1) = l_{n}(6)$$

$$(x-4)(x+1) = 6$$

$$x^{2}-3x-4=6$$

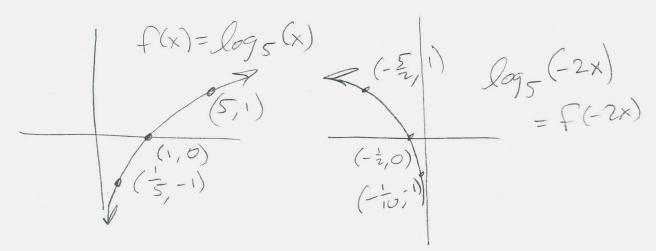
$$x^{2}-3x-10=0$$

$$(x-5)(x+2)=0$$

$$x \in \{-2,5\},$$

$$x \in \{-2,5\},$$

$$x = -2 \notin \emptyset \implies 5000 \text{ Set } 13\{5\}$$


4. (10 pts) Graph $h(x) = \log_5(-2x - 8)$. You can do it in 3 graphs (counting $f(x) = \log_5(x)$ as the first), if you combine the horizontal stretch/shrink with the horizontal reflection. If you do the stretch/shrink and the reflection separately, it will take 4 graphs. Use the same 3 key points that are used in class.

$$-2x-8 = -2(x+4)$$

$$x \longrightarrow -2x \longrightarrow -2(x+4)$$

$$\log_5(x) \longrightarrow \log_5(-2x) \longrightarrow \log_5(-2(x+4))$$

$$-\frac{1}{2} + i mes \times \qquad left 4$$

$$h(x) = \log_{\frac{\pi}{2}}(-2x-8)$$

$$-\frac{1}{2}-4 = -\frac{\pi}{2}-4 = -\frac{\pi}{2}-4 = -\frac{\pi}{2}$$

$$(-\frac{\pi}{2},0)$$

$$(-\frac{\pi}{2},0)$$

X=-4

$$-\frac{1}{2} - \frac{4}{2} = -\frac{7}{2}$$

$$-\frac{5}{2} - \frac{4}{2} = -\frac{13}{2}$$

$$-\frac{1}{2} - \frac{4}{10}$$

5. Solve for x:

$$4x-6=-3x+2$$

$$\frac{7 \times = 8}{1 \times = \frac{8}{7}}$$

b. (10 pts)
$$= 17 = 0$$
 (Solving this equation has a lot to do with the 1st question.)
 $= 4 \cdot 2^{x+1} + 5 = 0$

$$-4 \cdot 2^{\times +1} = -5$$

$$2^{\times +1} = -5 = 5$$

$$-4 = 5$$

$$\begin{array}{c} x+1=\log_2(5/4) \\ \hline \\ x=\log_2(\frac{5}{4})-1 = \ln(\frac{5}{4}) - 12 - .6780719051 \\ \hline \\ \ln(2) - .6781 \end{array}$$

c. (10 pts) $5^{x-1} = 3^x$ for x. Give an exact answer and then round your answer to 4 decimal places.

$$x-1 = log_{5}(3^{\times})$$

 $x-1 = x log_{5}(3) = 2^{\times},$
where $a = log_{5}(3) \Longrightarrow$

$$x = \frac{1}{1-\log_5(3)}$$

$$x-ax=1$$

 $x(1-a)=1$
 $x=1-a=1-log_{5}(3)=1-ln(3)/ln(5)$
 $x=1-a=1-log_{5}(3)=1-ln(3)/ln(5)$

6. (10 pts) Radioactive Wieligminium-12.5 has a half-life of 250 years. What's its decay rate? Write the function modeling the amount of radioactive Wieligminium-12.5 remaining in a sample after t years.

$$A_{0}e^{-Kt} = A(t)$$

$$A_{0}e^{-250K} = \frac{1}{2}A_{0}$$

$$e^{-250K} = \frac{1}{2}$$

$$-250K = \frac{1}{2}$$

$$-250K = \ln(\frac{1}{2})$$

$$K = \frac{\ln(\frac{1}{2})}{250} = \frac{\ln(2)}{250}$$

$$A(t) = A_{0}e^{-\frac{1}{2}}$$

7. (10 pts) Using your work from the previous problem (No double jeopardy – go with what you have (or make something up!)), a sample of radioactive Wieligminium decayed from 20 grams to 5 grams. How old is the sample?

$$A_0e^{-Kt} = 20e^{-Kt} = 5$$
 $e^{-Kt} = \frac{1}{4}$
 $-Kt = \ln(\frac{1}{4})$
 $t = \frac{\ln(\frac{1}{4})}{-K} = \frac{\ln(\frac{1}{4})}{\ln(\frac{1}{4})} = \frac{\ln(\frac{1}{4})}{\ln(\frac{1}{4})} = \frac{\ln(\frac{1}{4})}{\ln(\frac{1}{4})}$
 $= \frac{150 \ln(\frac{1}{4})}{150}$