- 1. (10 pts) $f = \{(1,-1), (2,4), (3,2), (4,5)\}$
 - a. Function? (Yes/no) Yes
 - b. If not, why not?
 - c. If it is a function, is it 1-to-1? (Yes/no) $\forall e \leq$
 - d. If it is *not* 1-to-1, why not?
 - 21,2,3,43 e. What's the domain?
 - 2-1,4,2,53 f. What's the range?
- 2. (10 pts) For each of the following graphs, determine if the relation is a function. If it is a function, state whether or not it is 1-to-1.

Is it a function?

Is it 1-to-1? NO

Is it a function? Yes

Is it 1-to-1?

Is it a function?

Is it 1-to-1?

3. (5 pts) Determine whether or not |x+3|-2y=5 defines y as a function of x. If it does not, show/explain why not. (Solve for y and look at how many solutions you get.)

$$-2y = 5 - |x+3|$$

$$y = -\frac{1}{2}(5 - |x+3|)$$
Yes.

4. (10 pts) Let $f(x) = x^2 + 3$. Simplify the difference quotient $\frac{f(x+h) - f(x)}{h}$.

$$(x+h)^2+3-(x^2+3) =$$

$$= \frac{x^2 + 2xh + h^2 + 3 - x^2 - 3}{h}$$

$$=\frac{2\times h+h^2}{h}=\frac{h(2\times +h)}{h}$$

5. Let
$$f(x) = \frac{x+2}{x+3}$$
 and $g(x) = \sqrt{x+5}$.

a. (5 pts) What is the domain of
$$f$$
? $\{x \mid x \neq -3\} = (-\infty, -3) \cup (-3, \infty)$

b. (5 pts) What is the domain of
$$g$$
? $\{ \times | \times 2 - 5 \} = [-5, \infty)$

c. (5 pts) Find
$$(f \circ g)(x)$$
. (Do not simplify.)

d. (5 pts) What is the domain of $(f \circ g)(x)$?

$$J = \frac{1}{2} \times \left[x \in \mathcal{D}(g) \text{ and } g(x) \in \mathcal{D}(f) \right]$$

$$= \frac{1}{2} \times \left[x \in \mathcal{D}(g) \text{ and } g(x) \neq -3 \right]$$

$$= \frac{1}{2} \times \left[x \geq -5 \text{ and } g(x) \neq -3 \right]$$

$$= \frac{1}{2} \times \left[x \geq -5 \right] = \frac{1}{2} \times \left[-5 \right] = \frac{1}{2} \times \left[-5 \right]$$

SCRATCH:

g(x) = -3

VX+5= = -3

is always

time.

e. Determine each of the following functions (without simplifying) and state the domain of each in *interval notation*.

i.
$$(5 \text{ pts}) (f+g)(x)$$

$$= \frac{x+2}{x+3} + \sqrt{x+5}$$

$$Q = \{x \mid x \in \mathcal{D}(x) \text{ and } x \in \mathcal{D}(g)\} = \{x \mid x \neq -3 \text{ and } x \neq -3 \}$$

$$= \left[-5, -3\right] \cup (-3, \infty)$$

$$= \frac{x+2}{x+5} \quad Q = \{x \mid x \neq -3 \text{ and } x \neq -2\}$$

$$= \{x \mid x \neq -3 \text{ and } x \neq -2\}$$

$$= \{x \mid x \neq -3 \text{ and } x \neq -2\}$$

$$= \{x \mid x \neq -3 \text{ and } x \neq -2\}$$

6. (5 pts) Answer one of the following:

a. Show that
$$f(x) = \frac{x-1}{x+2}$$
 is 1-to-1, algebraically.

b. Let
$$f(x) = \frac{x-1}{x+2}$$
. Find $f^{-1}(x)$.

2.
$$\frac{x-1}{x_1+2} = \frac{x_2-1}{x_2+2}$$

$$(x,-1)(x_2+2) = (x_2-1)(x_1+2)$$

$$2x_1 - x_2 = 2x_2 - x_1$$

$$3x_{1} = 3x_{2}$$

b.
$$x = \frac{y-1}{y+2}$$

 $x(y+2) = y-1$
 $xy+2x = y-1$
 $xy-y = -2x-1$
 $y(x-1) = -2x-1$
 $y = \frac{y-1}{x-1} = F'(x)$

7. (5 pts) The graph of f is given. Sketch the graph of f^{-1} .

8. (5 pts) If f varies jointly as q^2 and h, and f = -36 when q = 3 and h = 2, find f when

$$q = 4$$
 and $h = 2$.

$$K = \frac{-36}{18} = -2$$

$$f = kg^2h$$
 $-36 = k \cdot 3^2 \cdot 2$
 $f = (-2)(4^2)(2)$
 $= -64 = 6$

9. Graph each of the following functions using techniques of shifting, compressing, stretching, and/or reflecting. Start with the graph of the basic function and show all stages in separate sketches. Track 3 key points through the transformations.

a.
$$(5 \text{ pts})$$
 $h(x) = 3(x+5)^2 + 1$

$$= 3(x+5)^{2}+1$$

#9, continued... Graph using transformations.

b. (5 pts)
$$g(x) = \sqrt{3-x} + 5$$
 (Hint: $3-x = -x + 3$ is one way. $3-x = -(x-3)$ is another.)

10. (5 pts) Find the inverse of f(x) = 3x - 7

$$x = 3y - 7$$

 $x+7 = 3y$
 $y = \frac{x+7}{3} = f^{-1}(x)$