
- 1. (10 pts) $f = \{(2,-1),(3,-2),(4,2),(3,4)\}$
 - a. Function? (Yes/no)
 - b. If not, why not?
 - c. If it is a function, is it 1-to-1? (Yes/no)
 - d. If it is *not* 1-to-1, why not?
 - e. Domain?
 - f. Range?
- 2. (5 pts) $g = \{(2,-2), (4,6), (3,2), (11,5)\}$
 - a. Function? (Yes/no)
 - b. If not, why not?
 - c. If it is a function, is it 1-to-1? (Yes/no)
 - d. If it is *not* 1-to-1, why not?
 - e. Domain?
 - f. Range?
- 3. (5 pts) Use the horizontal line test to determine if the following functions are 1-to-1 (Yes/No for each graph).

4. (5 pts) Determine whether or not |y-2|+x=7 defines y as a function of x. If it does not, show/explain why not.

5. (10 pts) Let $f(x) = x^2 - 5$. Simplify the difference quotient $\frac{f(x+h) - f(x)}{h}$.

- 6. Let f(x) = 3x 5 and $g(x) = \sqrt{x + 7}$.
 - a. (5 pts) What is the domain of f? (Use Interval Notation.)
 - b. (5 pts) What is the domain of *g*? (Use Interval Notation.)

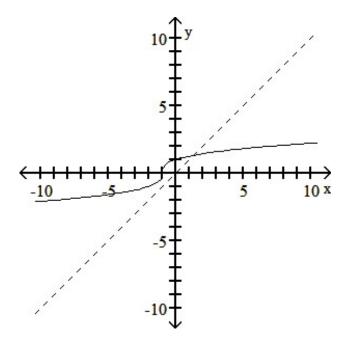
- c. Determine each of the following functions and state the domain of each in interval notation.
 - i. (5 pts) (f + g)(x)

ii. (5 pts) $\left(\frac{g}{f}\right)(x)$

iii. (5 pts) $(f \circ g)(x)$

iv. (5 pts) $(g \circ f)(x)$

7. (5 pts) Show that $f(x) = \frac{x+1}{x-3}$ is 1-to-1.


8. (5 pts) Let $f(x) = \frac{x+1}{x-3}$. Find $f^{-1}(x)$.

9. Graph each of the following functions using techniques of shifting, compressing, stretching, and/or reflecting. Start with the graph of the basic function and show all stages in separate sketches. Track 3 key points through the transformations.

a. (5 pts)
$$g(x) = \sqrt{x-3} + 5$$

b. (5 pts)
$$h(x) = -2(x+5)^2 - 3$$

10. (5 pts) The graph of f is given. Sketch the graph of f^{-1} .

11. (5 pts) If f varies jointly as q^2 and h, and f = -36 when q = 3 and h = 2, find f when q = 4 and h = 2.

12. (5 pts) Find the inverse of f(x) = 3x - 7