

- 3.4 – Real Zeros of Polynomials
- 3.5 – Complex Zeros of Polynomials and the Fundamental Theorem of Algebra
- 3.6 – Rational Functions
- 3.7 – Polynomial and Rational Inequalities

This week's assignment contains elements of [old Writing Project #3's from previous semesters](#), but with some subtle differences, for which new videos were made. So there's a mix of old videos and new videos, which I organized into one set for a [Week 9 Notes and Videos Page](#). You can use that, or just click on the videos next to the exercises, below.

For Weekly Written Assignments and WebAssign, we expect students to have access to [graphing calculators](#) and [computer algebra systems](#) (CAS's). For Written Tests, we only permit [scientific calculators](#). There's a danger of using technology as a crutch.

1. Let $g(x) = 4x^4 - 16x^3 + 3x^2 + 26x + 3$.
 - a. (5 pts) Use a simple graphic to describe the end behavior of g . See [Video for #1a](#).
 - b. (5 pts) Use Descartes' Rule of Signs to find the number of possible positive zeros g has. How many possible *negative* zeros does g have? See [Video for #1b](#).
 - c. (5 pts) What are the possible rational zeros of g ? See [Video for #1c - #1g](#).
 - d. (5 pts) Find all rational zeros of g . The Factor Theorem says that zeros $x = c$ of g correspond to factors $x - c$ of g . Use synthetic division and the rational zeros of g to factor g as far as you can with just the rational zeros. This is where you can save a lot of time with a quick Desmos sketch of the graph, so you can make your first guesses *good* guesses. On a *written* test, I cook the numbers so your rational zeros are all integers, which saves you a lot of time.
 - e. (5 pts) The new depressed polynomial is a quadratic polynomial. You can find *its* zeros with the quadratic formula or completing the square. Do so. Now you're ready to...
 - f. (5 pts) Write g as the product of linear factors promised to us by the Fundamental Theorem of Algebra. I don't want to see any decimal approximations. If $x = 1 + \sqrt{2}$ is a zero, then $(x - (1 + \sqrt{2}))$ is a factor.
 - g. (5 pts) Sketch a quick graph of g that shows all of its intercepts. To keep things in the right place, you may (should) obtain decimal approximations of the irrational zeros you found in part f.
2. Let $f(x) = 4x^6 - 40x^5 + 331x^4 - 920x^3 + 21x^2 + 1490x + 174$.
 - a. (5 pts) Use a simple graphic to describe the end behavior of f . If you don't know what I mean, they you may benefit from the See [Video for #1a](#).

- b. (5 pts) Suppose I told you that $f(x) = 4x^6 - 36x^5 + 146x^4 - 340x^3 + 76x^2 + 776x + 174$ has a complex zero $3 - 7i$. Use this information and long division of polynomials to factor f into the product of a quadratic polynomial and a quartic polynomial. See [Video for #2b and #2c](#)
- c. (5 pts) Based on your work in part b, you have a quadratic polynomial whose zeros are $3 \pm 7i$. You also have a quartic (4th-degree) polynomial, whose zeros are yet to be determined. This is called the "depressed polynomial."

If all has gone well, the depressed polynomial is the polynomial from #1! So f has the same real zeros as g from #1! Sketch its graph, using only the information from its intercepts. It's identical to #1's graph, with one exception. What's the only difference?

3. Let $R(x) = \frac{3x^2 + 6x - 24}{4x^2 + 27x + 18}$. See [Video for #3](#).
- (5 pts) What is the domain of R ?
 - (5 pts) Find the zeros of R . Also find the y -intercept of R . These will be labeled points on the graph.
 - (5 pts) Find any horizontal asymptotes of R .
 - (5 pts) Re-write R with its numerator and denominator factored (See parts a and b.). Then provide a sign pattern for R . Take care to distinguish between zeros of R and vertical asymptotes of R , both of which control any sign changes of R . Use the parity (sign) of the horizontal asymptote and the y -intercept to kick-start your sign pattern.
 - (5 pts) Render the graph of R , showing all intercepts and asymptotes. This is what "Graph R " means.
4. Let $\hat{R}(x) = \frac{3x^3 - 18x^2 - 72x + 192}{4x^3 - 5x^2 - 198x - 144}$. \hat{R} has the same graph as R , with one exception: \hat{R} has a hole. See [Video for #4](#).
- (5 pts) Where is the hole? Give your answer as an ordered pair (x, y) .
 - (5 pts) Go back to your graph of R in #3. Add the hole you found in part a, above to its graph. That will suffice in earning credit for the graphs of both R and \hat{R} . If you wish, you may do a separate graph for \hat{R} , showing all intercepts, asymptotes, and the hole.
5. Let $T(x) = \frac{3x^3 - 18x^2 - 72x + 192}{4x^2 + 27x + 18}$. T has a pair of vertical asymptotes and a slant (oblique) asymptote. See [Video for #5](#).

- a. (5 pts) Use long division to determine the slant asymptote. Call it $s(x)$.
- b. (5 pts) Sketch the graph of T , showing all intercepts and asymptotes. Most of the work has already been done, as T has the same denominator as R , and the same numerator as \hat{R} .