- 4.1 Exponential Functions
- 4.2 The Natural Exponential Function (and the number 'e.'
- 4.3 Logarithmic Functions (The Inverse of Exponential Functions)
 - 1. (10 pts) Starting with $f(x) = 4^x$, sketch the graph of $g(x) = -3 \cdot 4^{5x-25}$ in 5 steps, counting the graph of f(x) as the first step. Use x = -1, x = 0, and x = 1 to find 3 points in the first graph, and show how these 3 points are moved around by each step in the transformations to g(x).
 - 2. (10 pts) Find the *exact x* and *y*-intercepts for g(x) from #1.
 - 3. (10 pts) Find the inverse, $g^{-1}(x)$ for g(x) in #1.
 - 4. (10 pts) Solve $\ln(x-5) + \ln(x+2) = \ln(18)$. Give an exact answer and then round to 3 decimal places.
 - 5. Suppose the half-life of C-14 is 5400 years.
 - a. (5 pts) Derive the exponential decay model, $A(t) = A_0 e^{kt}$ for Carbon-14.
 - b. (5 pts) How old is a sample of charcoal from a prehistoric fire pit, if 28% of the C-14 has decayed (i.e., 72% is left.)? Round to the nearest year in your final answer. If it makes it easier for you, use an initial mass of 100g of C-14, but you shouldn't need the mass.
 - 6. (10 pts) Sketch the graph of $g(x) = -4\log_3(3x+21)+2$ by transforming the graph of $f(x) = \log_3(x)$. Track the points $(\frac{1}{3}, -1), (1,0)$, and (3,1) as they are moved from one place to another and another and another and another