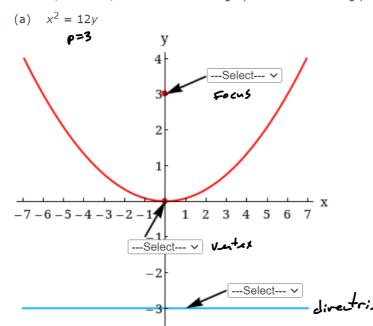

Section 7.1 - Parabolas

directrix

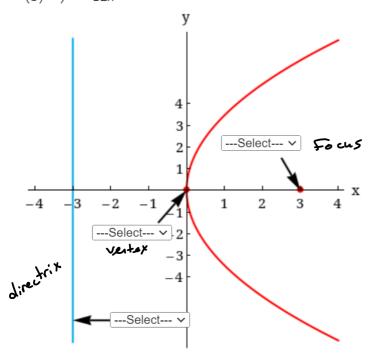
The graph of the equation $x^2 = 4py$ is a parabola with focus F(x, y) = (0, P) an

2 directrix y = -P . So the graph of $x^2 = 8y$ is a parabola with focus $F(x, y) = \begin{pmatrix} 0 & 2 \\ 0 & 2 \end{pmatrix}$ and directrix $y = \begin{bmatrix} -2 & 3 \\ 0 & 2 \end{bmatrix}$.

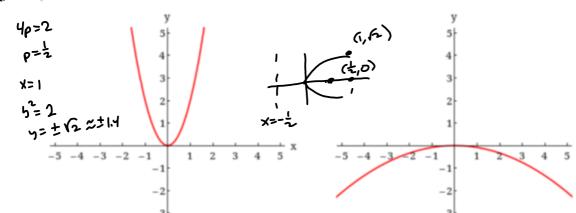

ρ= 2

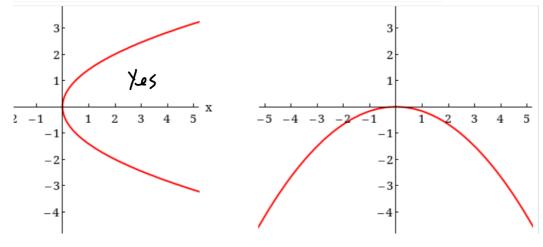
F(3,2)The graph of the equation $y^2 = 4px$ is a parabola with focus F(3,2) and

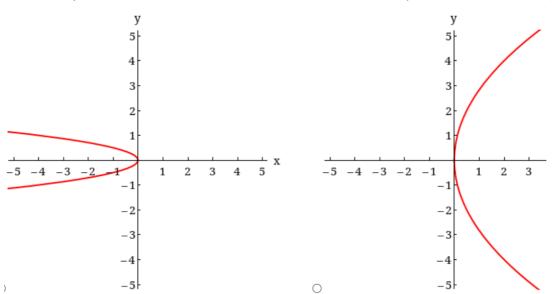
3 directrix $x = \begin{bmatrix} -? \\ -? \end{bmatrix}$. So the graph of $y^2 = 12x$ is a parabola with focus $F(x,y) = (\begin{bmatrix} 3,0 \\ 3,0 \end{bmatrix})$ and directrix $x = \begin{bmatrix} -3 \\ 3 \end{bmatrix}$.

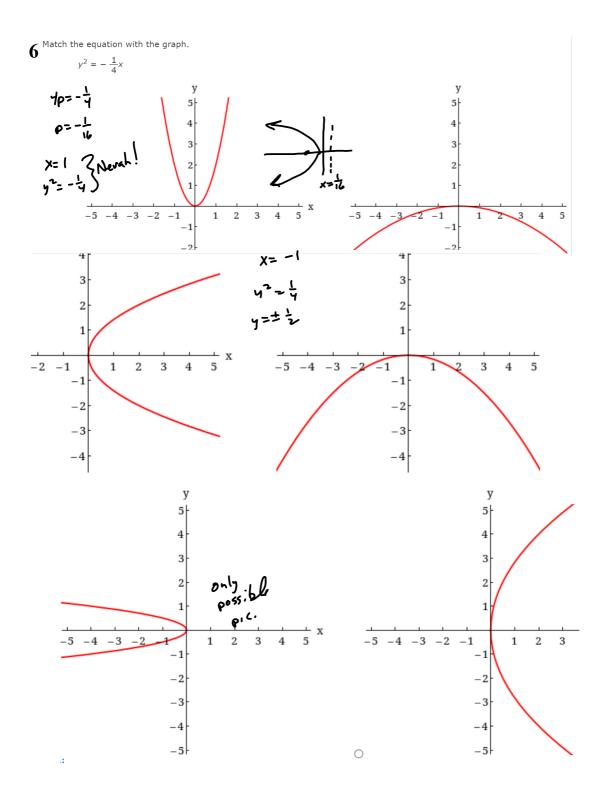

Label the focus, directrix, and vertex on the graphs of the following parabolas.

4


-4


(b) $y^2 = 12x$




Match the equation with the graph.

An equation of a parabola is given.

9

(a) Find the focus, directrix, and focal diameter of the parabola.

focus

$$(x, y) = \begin{pmatrix} o_{i} & I \end{pmatrix}$$

(0,1)

directrix

focal diameter

= Length of latus rectum?

(b) Sketch a graph of the parabola and its directrix.

20 (3,7)
20 (3,7)
4
20 (3,7)
4
20 (3,7)
4
20 (3,7)
4
20 (3,7)
4
20 (3,7)

An equation of a parabola is given.

10

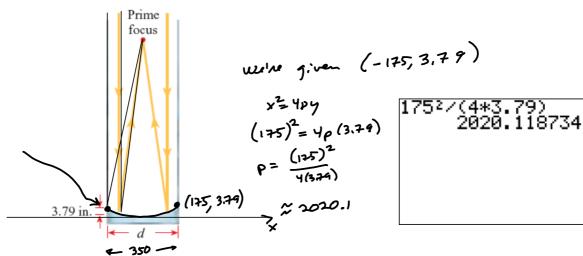
$$x^2 = -4y$$

(a) Find the focus, directrix, and focal diameter of the parabola.

focus

$$(x, y) = ($$

directrix


focal diameter

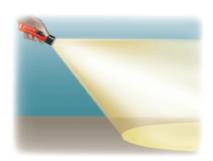
(b) Sketch a graph of the parabola and its directrix.

19 A telescope at a mountaintop observatory has a d = 350-in. mirror, as shown in the figure. The mirror is constructed in a parabolic shape that collects light from the stars and focuses it at the **prime focus**, that is, the focus of the parabola. The mirror is 3.79 in. deep at its center. Find the **focal length** of this parabolic mirror, that is, the distance from the vertex to the focus. (Round your answer to one decimal place.)

2020.1 v in

Watch the video below then answer the question.

20


Parabolas of the form $x^2 = 4py$

The equation of the parabola with its vertex at the origin and passes through the point (2, 2) has the form $x^2 = 4py$. Find p. (Enter an exact number as an integer, fraction, or decimal.)

p =

A flashlight is held to form a lighted area on the ground, as shown in the figure. Is it possible to angle the flashlight in such a way that the boundary of the lighted area is a parabola? Explain your answer.

21

- O Yes, if a cone intersects a plane at an angle to the base of the cone, the resulting curve is a parabola.
- Yes, if a cone intersects a plane that is parallel to an edge of the cone, the resulting curve is a parabola.
- O No, if a cone intersects a plane at an angle to the base of the cone, the resulting curve is an line.
- O No, if a cone intercepts a plane at any angle, the result is always a circle.