Fill in the blank with the appropriate direction (left, right, upward, or downward).

- (a) The graph of y = f(x) + 2 is obtained from the graph of y = f(x) by shifting 2 units. upward
  - (b) The graph of y = f(x + 2) is obtained from the graph of y = f(x) by shifting  $Q_a$  ftward 2 units.







Fill in the blank with the appropriate direction (left, right, upward, or downward).

(a) The graph of y = f(x) - 6 is obtained from the graph of y = f(x) by shifting y - 5 y - 6

(b) The graph of y = f(x - 6) is obtained from the graph of y = f(x) by shifting

6 units.

Fill in the blank with the appropriate axis (x-axis or y-axis).

3

2

- (a) The graph of y = -f(x) is obtained from the graph of y = f(x) by reflecting about the
- (b) The graph of y = f(-x) is obtained from the graph of y = f(x) by reflecting about the





A graph of a function f is given. Match each equation with one of the graphs labeled I-IV.

4



I Left 3 f(x+3) is (b)

II Up 2 f(x)+2 is (e)

III RIGHT 1 f(x-2) is (c)

IV DOWN Y f(x)-4 is (d)

If a function f is an even function, then what type of symmetry does the graph of f have? he function f has symmetry with respect to the y-axis. 5

- $^{\circ}$  The function f has symmetry with respect to the origin.
- $\bigcirc$  The function f has symmetry with respect to the x-axis.

#5 is Even

Symmetric wrt

the y-axis (-x, f(x))

(-x)=f(x)

#6 is Odd

**Symmetric wrt** 

the origin. ten=-ton "> (x'ton) (-x,-pcd)

If a function f is an odd function, then what type of symmetry does the graph of f have?

- $\bigcirc$  The function f has symmetry with respect to the y-axis.
- The function f has symmetry with respect to the origin.
  - The function f has symmetry with respect to the x-axis.

Suppose the graph of f is given. Describe how the graph of each function can be obtained from the graph of f.

7

(a) 
$$f(x+1)$$
 Left  $l$   
 $y \mapsto y-1$ 

(b) 
$$f(x) + 8$$

Explain how the graph of g is obtained from the graph of f.

8 (a) 
$$f(x) = x^2$$
,  $g(x) = (x+9)^2 = f(x+1)$ 

(b) 
$$f(x) = x^2$$
,  $g(x) = x^2 + 9 - f(x) + 9$ 

 $t(x) = x_3$ 







Explain how the graph of g is obtained from the graph of f.

9 (a) 
$$f(x) = x^3$$
,  $g(x) = (x - 3)^3 = f(x - 5) \times +3 \times +3$  Right?

(b) 
$$f(x) = x^3$$
,  $g(x) = x^3 - 3 = f(x) - 3$  y -> y -3 Jown 3







Explain how the graph of g is obtained from the graph of f.

10 (a) 
$$f(x) = |x|$$
,  $g(x) = |x + 4| - 4$  Left +, Down 4

(b)  $f(x) = |x|, \quad g(x) = |x - 4| + 4$  Right 4, Up 4





(2) g(x)= 1 x+41-4 = f(x+4)-4 Down 4



Explain how the graph of g is obtained from the graph of f.

11 (a)  $f(x) = \sqrt{x}$ ,  $g(x) = -\sqrt{x} + 2$ 













## **Bridge to Writing Project #2**

I think by the time you finish #11, you've seen just enough exercises and had enough discussion to bridge from your homework on WebAssign to your Writing Project #2

**Recall:** 

7f(x) multiplies all the y values by 7. It's a vertical stretch by a factor of 7.

(x,y) on the graph of f(x) implies (x,7y) is on the graph of 7f(x)





aı

f(3x) multiplies all the x values by  $\frac{1}{3}$ . It's a horizontal shrink by a factor of 1/3.

(x,y) on the graph of f(x) implies  $\left(\frac{1}{3}x,y\right)$  is on the graph of f(3x).





If you can do that, then you can do all your reflections by simply following the rules, above. It's a combo move that's a natural one-step move

-7f(x) multiplies all the y values by -7. It's a vertical stretch by a factor of 7

AND a reflection about the x-axis. (Up to down)

and





f(-3x) multiplies all the x values by  $-\frac{1}{3}$ . It's a horizontal shrink by a factor of 1/3

AND a reflection about the y-axis. (left-to-right)





Continuing the Homework...

Use the graph of  $y = x^2$  (in blue) to graph the following (in red). 12

(a) 
$$g(x) = x^2 + 2$$



(g(x)) = x2+2 mp 2 : (x,y) -> (x,y+2) (-1,1) -> (x,y+2) = (1,3) (1,1) -> (1,1+2) = (1,3)

Matching. Ugh. At least they go fairly quickly. You should be doing a hand sketch for each of these as I am doing.

Well, maybe not as many points as I show, for you to know you have the right idea after the 4th or 5th or 10th one, just by following one or two points around.









(d) 
$$g(x) = (x - 2)^2 + 4$$



Use the graph of  $y = \sqrt{\chi}$  (dashed) to graph the given functions (solid).

13

(a) 
$$g(x) = \sqrt{x-1}$$

(b)  $g(x) = \sqrt{x} + 3$ 



(c) 
$$g(x) = \sqrt{x+1} + 1$$



(d)  $g(x) = -\sqrt{x} + 3$ 



$$f(x) = \sqrt{x} + 1 = f(x+1) + 1$$

$$f(x) = \sqrt{x} + 1 = f(x+1) + 1$$





















Consider the graph of y = |x|. 14

Match the graph with the function.

$$y = |x + 5|$$



g (x)= 1x+51 = f(x+5) x -> x-5



Consider the graph of y = |x|.

15 Match the graph with the function.

$$y = -|x|$$







Sketch the graph of the function, not by plotting points, but by starting with the graph of a standard function and applying transformations.



#s 17 - 19 See Video

Sketch the graph of the function, not by plotting points, but by starting with the graph of a standard function and applying transformations.  $^{20}$ 



Sketch the graph of the function, not by plotting points, but by starting with the graph of a standard function and applying transformations.

transformations.  $g(x) = \sqrt[4]{-x}$   $f(x) = \sqrt[4]{x}$   $f(x) = \sqrt[4]{x}$  f(



Sketch the graph of the function, not by plotting points, but by starting with the graph of a standard function and applying transformations.

22

$$f(x) = \sqrt[3]{-x}$$









Sketch the graph of the function, not by plotting points, but by starting with the graph of a standard function and applying transformations.

23

$$y = \frac{1}{6}|x|$$

$$y = \frac{1}{6}|x|$$

$$y = \frac{1}{6}|x|$$

$$\int_{0}^{\infty} |x| \int_{0}^{\infty} |x|^{2} dx \quad \text{if } x \ge 0$$

$$\int_{0}^{\infty} |x|^{2} \int_{0}^{\infty} |x$$





Sketch the graph of the function, not by plotting points, but by starting with the graph of a standard function and applying



Sketch the graph of the function, not by plotting points, but by starting with the graph of a standard function and applying transformations. (Select Update Graph to see your response plotted on the screen. Select the Submit button to grade your

$$f(x) = 4 - 2(x - 5)^2 = -2(x-5)^2 + 4$$
 $x^2 \longrightarrow -2(x-5)^2 \longrightarrow -2(x-5$ 

Start with the graph of a standard function  $y = g(x) = \begin{cases} x^2 \end{cases}$ 

The point A at (0, 0) moves to A' at (x, y) = (5,4)

The point B at (1, 1) moves to B' at (x, y) = (6,2)





Not clear where

Now, do it like





## #s 26-28 Click Here for Videos

## #29 Click Here for the Video.

30 A graphing device is recommended.

If  $f(x) = \sqrt{2x - x^2}$ , graph the following functions in the viewing rectangle [-5, 7] by [-4, 4].

(a) 
$$y = f(x)$$
  
(b)  $y = f(3x)$  ther. SHRINK  $x \mapsto \frac{1}{3}x$ 

(c) 
$$y = f\left(\frac{1}{3}x\right)$$
 How. STRETCH &  $\longrightarrow$  3>



Extra Insight/Technique

$$f\omega = \sqrt{2x-x^2}$$
 $= x^2+2x$ 
 $= (x^2-2x+x^2)+x$ 







Sometimes you can pull a factor outside of the function and turn it into a vertical stretch/shrink as your first move, rather than a horizontal shrink/stretch, respectively. Stretching y can be thought of as shrinking x in some situations.



