_	If the	point (2, 7) is on t	he graph of an equati	on in x and y , then the equation is satisfied when we
1	replac	ce x by 2	and y by 7	
	Is the	point (2, <mark>7</mark>) on the	e graph of the equatio	n 2y = x + 3?
	^			2(2) = 2 +3
	Comp	lete the table.		2(2) = x + 3? $3(2) = 2 + 3?$ $4 = 5?$ $1 = 5?$
	x	у	(x, y)	V+3
	-2	2	(2/2)	2y= -2+3 = (7 · ·
	-1		(-1,1	$2y = -(+3 = 2) y = \frac{2}{2} = 1$ $2y = 0 + 3 = 3 \Rightarrow y = \frac{3}{2}$
	0	2	(0,2)	
	1	~	(1,2)	2y=1+3-4 -y=2
	2	2	(2,5)	27=2+3=5-> y=5
	Ske	etch the graph.		

(b) To find the *y*-intercept(s) of the graph of an equation, we set $\frac{1}{y} = y + 1$ is $\frac{1}{y} = y + 1$. So

(a) If a graph is symmetric with respect to the x-axis and (a, b) is on the graph, then $\left(\begin{array}{c} \\ \\ \end{array}\right)$ is also on the graph.

(b) If a graph is symmetric with respect to the y-axis and (a, b) is on the graph, then $\left(\begin{array}{c} \\ \\ \end{array}\right)$ is also on the graph.

(c) If a graph is symmetric about the origin and (a, b) is on the graph, then $\bigg(\bigg)$ is also on the graph.

The graph of an equation is shown below.

4

2

(a) The x-intercepts are $(x, y) = \left(\begin{array}{c} \\ \\ \\ \end{array}\right)$ (smaller x-value) and $(x, y) = \left(\begin{array}{c} \\ \\ \end{array}\right)$ (larger x-value) and $(x, y) = \left(\begin{array}{c} \\ \\ \end{array}\right)$ (smaller y-value) and $(x, y) = \left(\begin{array}{c} \\ \\ \end{array}\right)$ (larger y-value).

(i)

(b) The graph is symmetric about the $\overline{\text{---Select---}}$.

Determine whether the given points are on the graph of the equation.

5
$$y = \sqrt{1-x}; (2, 1), (-3, 2), (0, 1)$$

(2, 1)

$$(2,1)$$
? $1=\sqrt{1-2}=\sqrt{-1}=i$

Determine whether the given points are on the graph of the equation. (Select all that apply.)

 $y(x^2 + 1) = 1;$ (1, 1), $\left(3, \frac{1}{10}\right), \left(-3, \frac{1}{10}\right)$

 \Box The point (1, 1) is on the graph of the equation.

he point $\left(3, \frac{1}{10}\right)$ is on the graph of the equation.

the point $\left(-3, \frac{1}{10}\right)$ is on the graph of the equation.

 $\hfill \square$ None of these points are on the graph of the equation.

$$\frac{1}{10}(1^{2}+1) = 1(2) = 2 = 1 \text{ No}$$

$$\frac{1}{10}(3^{2}+1) = \frac{1}{10}(3^{2}+1) = \frac{1}{10}(10) = 1 = 1 \text{ No}$$

$$\frac{1}{10}(1^{2}+1) = \frac{1}{10}(3^{2}+1) = \frac{1}{10}(10) = 1 = 1 \text{ No}$$

Determine whether the given points are on the graph of the equation. (Select all that apply.)

circle x2+y2=r2

(0,22

The point $\left(\frac{2}{\sqrt{2}}, \frac{2}{\sqrt{2}}\right)$ is on the graph of the equation.

The point $\left(\frac{\sqrt{15}}{2}, \frac{1}{2}\right)$ is on the graph of the equation.

Make a table of values for the equation.

$$y = -4x$$

X	У
-2	8
-1	ч
0	0
1	-4
2	

Sketch a graph of the equation.

Parabola y= 2 x2+bx + c Make a table of values for the equation. This am x2 flighed across x-axis & moved 11 3 $-(-2)^2+9=-2^2+9=-4+9=5$ - (-1)2+9=-12+9=-1+9=8 5 Sketch a graph of the equation. Make a table of values. y = |x| - 412 -3 **– ۱** -2 -3 y= 1x1 -4 Web Assign wants blind plug to chung. 1 2 3 Sketch the graph of the equation.

Make a table of values, and sketch the graph of the equation. Find the x- and y-intercepts, and test for symmetry.

15

(a)
$$y = \sqrt{x} + 4$$

Make a table of values, and sketch the graph of the equation.

Find the x- and y-intercepts. (If an answer does not exist, enter DNE.)

 $(x, y) = \begin{pmatrix} \mathbf{\sigma}_{i} \mathbf{Y} \\ \mathbf{\sigma}_{i} \end{pmatrix}$ try. (Select all that apply.)

Test for symmetry. (Select all that apply.)

- \Box The graph is symmetric with respect to the *x*-axis.
- \Box The graph is symmetric with respect to the *y*-axis.
- The graph is symmetric with respect to the origin.
- \Box The graph is not symmetric with respect to the x-axis, the y-axis, or the origin.

(b) y = -|x|

Make a table of values, and sketch the graph of the equation.

Find the x- and y-intercepts. (If an answer does not exist, enter DNE.)

$$x$$
-intercept $(x, y) = \left(\begin{array}{c} \mathbf{O}_{1}\mathbf{O} \end{array} \right)$

y-intercept $(x, y) = \begin{pmatrix} 0, 0 \end{pmatrix}$

Test for symmetry. (Select all that apply.)

- \Box The graph is symmetric with respect to the x-axis.
- ☐ The graph is symmetric with respect to the *y*-axis.
 - ☐ The graph is symmetric with respect to the origin.
 - \Box The graph is not symmetric with respect to the x-axis, the y-axis, or the origin.

Make a table of values, and sketch the graph of the equation. Find the x- and y-intercepts, and test for symmetry. 16

(a)
$$y = \sqrt{x - 2}$$

Make a table of values, and sketch the graph of the equation.

Find the x- and y-intercepts. (If an answer does not exist, enter DNE.)

$$x$$
-intercept $(x, y) = \left(\begin{array}{c} 2, 0 \end{array} \right)$

y-intercept
$$(x, y) = \left(\begin{array}{c} \mathbf{DNE} \end{array} \right)$$

Test for symmetry. (Select all that apply.)

- \Box The graph is symmetric with respect to the *x*-axis.
- \Box The graph is symmetric with respect to the *y*-axis.
- The graph is symmetric with respect to the origin.

 The graph is not symmetric with respect to the x-axis, the y-axis, or the origin.

(b)
$$x = |y|$$

Make a table of values and sketch the graph of the equation.

Find the x- and y-intercepts. (If an answer does not exist, enter DNE.)

$$x$$
-intercept $(x, y) = \left(\begin{array}{c} O \\ O \\ \end{array} \right)$

y-intercept
$$(x, y) = \left(\begin{array}{c} \mathbf{0}, \mathbf{0} \end{array} \right)$$

Test for symmetry. (Select all that apply.)

- \Box The graph is symmetric with respect to the *x*-axis.
- \Box The graph is symmetric with respect to the *y*-axis.
- ☐ The graph is symmetric with respect to the origin.
- \Box The graph is not symmetric with respect to the *x*-axis, the *y*-axis, or the origin.

Make a table of values, and sketch the graph of the equation. Find the x- and y-intercepts, and test for symmetry.

17 (a)
$$y = -\sqrt{9 - x^2} = -\sqrt{3^2 - x^2}$$

Find the x- and y-intercepts. (If an answer does not exist, enter DNE.)

$$x$$
-intercept $(x, y) = \left(\begin{array}{c} \\ \\ \end{array}\right)$

Vx2 = V9

1x1 = 3

x=±3

Test for symmetry. (Select all that apply.)

- \Box The graph is symmetric with respect to the *x*-axis.
- \Box The graph is symmetric with respect to the *y*-axis.
- ☐ The graph is symmetric with respect to the origin.
- \Box The graph is not symmetric with respect to the x-axis, the y-axis, or the origin.

Extra: This Thing Is Circular!!!

 $x^2+y^2=9$ is a circle of radius 3 centered at the origin. (\$1.3) Solve for y: y2 = 9-x2

(b)
$$x = y^3$$

Make a table of values, and sketch the graph of the equation.

Find the x- and y-intercepts. (If an answer does not exist, enter DNE.)

$$x$$
-intercept $(x, y) = \begin{pmatrix} \\ \\ \\ \\ \\ \end{pmatrix}$
 y -intercept $(x, y) = \begin{pmatrix} \\ \\ \\ \\ \\ \end{pmatrix}$

Test for symmetry. (Select all that apply.)

- $\ \square$ The graph is symmetric with respect to the *x*-axis.
- The graph is symmetric with respect to the y-axis.
- he graph is symmetric with respect to the origin.
 - \Box The graph is not symmetric with respect to the x-axis, the y-axis, or the origin.

Find the x- and y-intercepts of the graph of the equation. (If an answer does not exist, enter DNE.)

18 (a)
$$y = x + 5$$

$$x$$
-intercept $(x, y) = \begin{pmatrix} -5, 0 \end{pmatrix}$

y-intercept
$$(x, y) = \begin{pmatrix} 0,5 \end{pmatrix}$$

(b)
$$y = x^2 - 7$$

x-intercept (smaller x-value)
$$(x, y) = \left(-\sqrt{4}, o \right)$$

x-intercept (larger x-value)
$$(x, y) = \left(\begin{array}{c} \checkmark & \checkmark & \checkmark \\ \checkmark & \checkmark & \checkmark \\ \end{array} \right)$$

y-intercept
$$(x, y) = (0, -7)$$

$$x-id$$
!
 $x^{2}=7=0$
 $x^{2}=7$
 $\sqrt{x^{2}}=\sqrt{7}$
 $|x|=\sqrt{7}$
 $x=\pm\sqrt{7}$

Test the equation for symmetry. (Select all that apply.)

$$y = x^3 + 16x$$

- 19 \Box The graph of the equation is symmetric with respect to the x-axis.
 - \square The graph of the equation is symmetric with respect to the *y*-axis.
 - \bigcap he graph of the equation is symmetric with respect to the origin.

$$y = x^{3} + 16x$$

$$(-x)^{3} + 16(-x) = -x^{3} - 16x = -(x^{3} + 16x) = -y.$$

$$((-1)(x))^{3} - 16x = (-1)^{3}(x)^{3} - 16x = -1x^{3} - 16x = -y$$

$$-y = -(x^{3} + 16x) = -x^{3} - 16x = (-x)^{3} + 16(-x) \text{ gives } -x$$

20

Test the equation for symmetry. (Select all that apply.)

$$x^8y^8 + x^4y^4 = 8$$

- \Box The graph is symmetric with respect to the *x*-axis.
- \Box The graph is symmetric with respect to the *y*-axis.
- $\hfill\Box$ The graph is symmetric with respect to the origin.

$$(-x)^{8}(-y)^{8} + (-x)^{4}(-y)^{4} =$$

$$= x^{8}y^{8} + x^{7}y^{4} = 8$$

$$= x^{8}y^{8} + x^{7}y^{4} = 8$$

Complete the graph using the given symmetry property.

Symmetric with respect to the y-axis

Complete the graph using the given symmetry property.

Symmetric with respect to the x-axis

22

Complete the graph using the given symmetry property.

23

 $\label{eq:continuous} \mbox{Symmetric with respect to the origin}$

Add line segments to the graph so that it exhibits the indicated symmetry. In each case, add as little as possible.

- (a) Symmetry about the x-axis

 - (b) Symmetry about the y-axis

(c) Symmetry about the origin

15

EXTRA! Sneak Preview of Basic Functions for More Insight into some of these exercises and future exercises. In a way, I'm "spoiling the movie" the WebAssign has all laid out, but I just can't help myself.

The Identity Fuction

Symmetric through (or "about") the origin.

Square Function

$$y = x^2$$

$$\frac{y \mid y}{-1 \mid 0} = \frac{1}{(0,0)}$$
This is symmetric about the y-axis
$$\frac{y \mid y}{-1 \mid 0} = \frac{1}{(0,0)}$$
You wanto think of it as

$$y = |x|$$

Symmetric about y-axis

Square Root Function

$$y = \sqrt{x}$$

Note x20 is needed to Keep VX real.

