Solve the equations involving logarithmic functions. I want the exact answer, not a decimal approximation.

1. $\log _{2}(x)=3$
2. $\log _{3}(x)=0$
3. $\log (x+20)=2$
4. $\log \left(x^{2}-5\right)=1$
5. $-2=\log _{x}(4)$ Rarely see these where the base is the unknown.
6. $\log _{x}(10)=3$
7. $\log _{2}(x+2)+\log _{2}(x-2)=5$
8. $\log \left(\frac{x-3}{2}\right)+\log \left(\frac{x+2}{7}\right)=0$
9. $\log (x+1)-\log (x)=3$
10. $\log _{4}(x)-\log _{4}(x+2)=2$
11. $\log _{3}(x)=\log _{3}(2)-\log _{3}(x-2)$
12. $\log (4)+\log (x)=\log (5)-\log (x)$
13. $\log _{3}(x)+\log _{3}(1 / x)=0$
14. $6^{x}=3^{x+1}$ This one is messy, but do-able, by hand.

Solve the logarithmic equations. Show the exact answer, then round final answer to 4 decimal places. $6^{x}=3^{x+1}$
15. $e^{-\ln (w)}=3$
16. $4(1.02)^{x}=3(1.03)^{x}$

I don't see a 'by hand' method for the following. Use a graphing utility to solve, correct to 4 decimal places.
17. $2^{x}=3^{x-1}+5^{-x}$ Taking log of both sides doesn't work, because it's a sum on the right side, unlike \#14.
18. $x^{2}=2^{x}$
19. The half-life of a radioactive isotope is 10,000 years. What's the decay rate?
20. The half-life of radioactive Carbon-14 is about 5730 years. If 15% of naturally occurring Carbon-14 has decayed in a sample of charcoal from a fire pit, how old is that fire pit?
21. If 79.3% of radioactiveo Carbon-14 remains in a sample, how old is that sample?

