$121 \$ 4.2$
(1) Fenverse of an exponentind is a logasither
(2) Base 10 is common
(3) Base e is natural
(4) $f(x)=\log _{2}(x)$ is increasiog $N x>1$ and deceasing if $2<1$ (Need $2>0,+\infty 0$)
(5) y-axis is vertical asymptote to $f(x)=\log _{9}(x)$
(6) Thodomain of $f(x)=\log _{e}(x)$ is $\left.60, \infty 0\right)$
(7) The logasitumie Pamily of funes is 00

Anctions of the form $y=b \log _{x}(x-h)+k$
(8) The gne-to-one propety says that

$$
\begin{aligned}
& \text { The gne-to-one property suys that } x=y \text {. } \\
& \log _{a}(x)=\log _{b}(y) \text { in plies that } \\
& \text { Polve for the "?" }
\end{aligned}
$$

Solve for the "?"

$$
\begin{aligned}
& 92^{?}=64=2^{6} \rightarrow ?=6 \\
& 3^{?}=\frac{1}{81}=\frac{1}{3^{4}}=3^{-4} \Rightarrow ?=-4
\end{aligned}
$$

121842
sketch.

$$
\begin{aligned}
& \square^{14} y=\log _{3}(x)
\end{aligned}
$$

$$
\begin{aligned}
& { }^{15} f(x)=\log _{5}(n) \\
& \rightarrow \begin{array}{ll}
(5,0) & D=(0, \infty) \\
(x=0) & R=R
\end{array} \\
& 16, \log _{1 / 2}(x) \\
& 0^{17} h(x)=\log _{V_{5}}(x) \\
& \begin{array}{c}
\boldsymbol{D}=(0,0) \\
R=\mathbb{R} \\
x=0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 1218^{4} 4.2 \\
& { }^{18} f(x)=\ln (x-1)
\end{aligned}
$$

19

$$
f(x)=\log (x+2)-3
$$

$$
\frac{1}{10}-2=\frac{1}{10}-\frac{20}{10}=-\frac{19}{10}
$$

Use graph / table to find the limit

Easiest way to get these is to know what the picture looks like. It can take a long time of feeding humongous numbers to a logarithm, before you're convinced that it grows without bound.

The other discussion, below, is way advanced, compared to 121, but some students will glom on to it in a hurry and some will greatly benefit from seeing this kind of "Anything you can BIG I can Big BIGGER!"

$$
\begin{aligned}
& \log _{3}(5000)=\frac{\ln (5000)}{\ln (3)} \approx 7.753 \\
& \log _{3}\left(10^{6}\right)=6 \log _{3}(10)=6 \frac{\ln 10}{\ln 3} \approx 12.5754 \\
& \text { bound this way: }
\end{aligned}
$$

Advanced Approacit:
Prove it grows without bound this way: Let M be B1G. Want to see if $\log _{3}(x)$ can be made bigger C

$$
\log _{3}(x)>M \text { ? }
$$

$$
3^{\log _{3}(x)}>3^{m} ?
$$

$$
x>3^{m}
$$

To make

$$
\begin{aligned}
& \text { To make } \\
& \log _{3}(x)>100000000
\end{aligned}
$$

$$
\text { Tulle }{ }_{x>3} 100000000
$$

$$
x>3
$$

It takes a while, but it eventually. binges than

121842
${ }^{21} \lim _{x \rightarrow \infty} \log (x)=\infty$
 is the visual
The Form way is
to say" Give me a big mumben and I can make $\log (x)$ bigger!
Wont $\log (x)>B 1 G$
wont $10^{\log (x)}>10^{B i G}$

$$
\text { want } x>10^{B 19}
$$

Now prone it by Nuessisg the want steps:

Let M be given. propl.Bonus only. This is a formal Let $x>10^{M}$. Then

$$
\begin{aligned}
& \text { Let } x>10^{M} \cdot \text { Then } \\
& \log (x)>\log \left(10^{M}\right)=M \log (10)=M \\
& \text { This is } 9 \text { Bonus } \\
& n \text { PRove } \lim _{x \rightarrow \infty} \log (x)=\infty
\end{aligned}
$$

