Always do the terminology fill-in-the-blank questions at the beginning of each homework section. This section, they are the first 8 questions.

Evaluate the following without a calculator. You will want to do a ton more of these, 'til you're fast at it.
9. 3^{3}
10. $-9^{-\frac{3}{2}}$

Sleeper \#15 that sneaked past me: $\left(\frac{1}{2}\right)^{-4}$
Let $f(x)=3^{x}, g(x)=2^{1-x}$, and $h(x)=\left(\frac{1}{4}\right)^{x}$. Evaluate the following:
11. $f(-2)$
12. $g(2)$
13. $h(-1)$

Sketch the graph of each of the following functions.
14. $f(x)=5^{x}$
15. $f(x)=\left(\frac{1}{4}\right)^{x}$

Use a graph or a table to find each limit. Down the road (Like, tomorrow!), you should have a general idea of what these objects look like and these limits at infinity will be quick-twitch 'end behavior' concepts for you.
16. $\lim _{x \rightarrow \infty}\left(3^{x}\right)$
17. $\lim _{x \rightarrow \infty}\left(\left(\frac{1}{3}\right)^{x}\right)$

Sketch the graph of each of the following exponential functions.
18. $f(x)=2^{x}-3$
19. $y=1-2^{x}$

Write the equation defining the function described. I give you the transformations to a basic function. You provide the resulting function.
20. This function is obtained by shifting $y=2^{x}$ to the right 5 units and down 2 units.
21. This function is obtained by shifting $y=\left(\frac{1}{4}\right)^{x}$ to the right 1 unit, reflected in the x-axis (vertical flip) and down 2 units.

Questions for in-class: \#s 20 and 21 re-done for the following moves. The order of the moves matters!!!
a. reflect in x-axis, reflect in y-axis, up 3 , left 7
b. up 3 , left 7 , reflect in x-axis, reflect in y-axis
c. reflect in x-axis and stretch vertically by factor of 3 , reflect in y-axis and stretch horizontally by a factor of 5, up 3 , right 7
d. up 3 , right 7 , reflect in x-axis and stretch vertically by factor of 3 , reflect in y-axis and stretch horizontally by a factor of 5 .

Solve each of the following equations. If you're using a calculator on these, you're probably not mastering the concepts the way I want. Sure, check answers with one. But manipulate these exponentials into a form that lends itself to solving by the $a^{x}=a^{y} \Rightarrow x=y$ method. Trick is to get the same ' a ' on both sides.
22. $10^{x}=0.1$
23. $8^{x}=2$
24. $\left(\frac{1}{2}\right)^{x}=8$
25. A deposit of $P=\$ 4,000$ earns 8% annual percentage rate (APR). Find the amount, A, in the account and the interest earned, I, at the end of $t=6$ years, if interest is compounded...
a. ... annually
b. ... quarterly
c. ... monthly
d. ... daily
e. ... continuously

If you're doing it right, daily and continuously shouldn't differ by much.
26. If the APR is 8%, compounded continuously on a principle balance of $\$ 5,000$, find the future value after...
a. ... 6 years
b. ... 8 years
c. ... 5 years
d. ... 20 years, 321 days. (Assume 365 days in a year.)

