Fard all asymptotes, x-and y-int tencepts, and sketch

$$
\square f(x)=-\frac{1}{x} \quad \mathcal{R}=\mathbb{R} \backslash\{0\}
$$

Fund

$$
x=2
$$

3

$$
f(x)=\frac{1}{x^{2}-4}=\frac{1}{(x-2)(x+2)}
$$

$$
y-n+5(0, f(0))+\left(0,-\frac{1}{4}\right)
$$

$$
\mathcal{H}=\mathbb{R} \backslash\{ \pm 2\}
$$

$$
\begin{gathered}
\text { VA. } \cdot x=\frac{x}{x^{2} y} \\
(y=0 \text { is H.A. }
\end{gathered}
$$

$$
19=\mathbb{R}-3-13
$$

$$
V, A,: x=-1
$$

H.A.' $y=0$ (f is "pope.")

$x=-1$

$\frac{t+1}{t-2}+\frac{1}{4}>$ Sign pattern informs the graph.

Horizontal asymptote is great for sign pattern. It tells us the end behavior. Here, $y=1$ is the H.A., and this tells us that the function is positive on the far right and far left. USE this concept! Otherwise, things just move too slow and are too complicated.
1213.5 Graphs of Rational Functions and Rational Inequalities

$$
6 f(x)=\frac{2 x+1}{x-1}
$$

Anytime degree of numerator is same ns claque of denomaratar, just lack O highest degree terms for a horizontal asymptote.

$$
\begin{aligned}
& \frac{2 x}{x}=2 \Rightarrow y=2 \text { is H.A. } \\
& y=\mathbb{R} \backslash\{1\} \\
& x=1 \text { is V.A. }
\end{aligned}
$$

$$
f(0)=\frac{1}{-1}=-1 \otimes(0,-1)
$$

$$
\frac{2 x+1}{x-1}=0=
$$

$$
2 x+1=0 \Rightarrow
$$

$$
2 x=-1=
$$

$$
x=-\frac{1}{2},\left(-\frac{1}{2}, 0\right)
$$

$x=1$
1213.5 Graphs of Rational Functions and Rational

$$
\begin{aligned}
& f(x)=\frac{x}{x^{2}-1}=\frac{x}{(x-1)(x+1)} \\
& \mathcal{A}=\mathbb{R} \backslash\{ \pm 1\} \\
& (x= \pm 1 \text { V. A1 }
\end{aligned}
$$

Degree of denomuiator is queates tham dogpe of numeraler \rightarrow PROPCR" $\Rightarrow y=0$ is HoA.

$$
\begin{aligned}
& f(x)=0 \\
& \frac{x}{x^{2}-1}=0 \\
& x=0 \quad \leadsto(0,0)
\end{aligned}
$$

Mught Test $x=2$ to be sure the "t" on the right is conect.

$$
\frac{2}{2^{2}-1}=\frac{2}{3}>0^{11}+11
$$

121 3.5 Graphs of Rational Functions and Rational Inequalities
$8 \quad f(x)=\frac{4 x}{x^{2}-2 x+1}=\frac{4 x}{(x-1)^{2}}$

$$
\frac{\mathcal{N}=R,\{1\}}{\text { NA. is } x=1}
$$

$$
\text { HA. }>y=0
$$

(f is "Proper, 4)

$$
f(0)=\frac{0}{m}=0
$$

$$
\sim(0,0)
$$

because $x=1$ is
pot of $m=2$

121 3.5 Graphs of Rational Functions and Rational

$$
\begin{aligned}
& \text { } f(x)=\frac{8-x^{2}}{x^{2}-9}=\frac{-x^{2}+8}{x^{2}-9}=\frac{-\left(x^{2}-8\right)}{x^{2}-9}=\frac{-(x-2 \sqrt{1})(x+2 \sqrt{2})}{(x-3)(x+3)} \\
& D=\mathbb{R} \backslash\{ \pm 3\} \\
& \text { VA } x= \pm 3
\end{aligned}
$$

$$
\text { H.A.: } \frac{-x^{2}}{x^{2}}=-1
$$

$$
y=-1
$$

$$
\frac{8-x^{2}}{x^{2}-9}=0
$$

$$
8-x^{2}=0
$$

$$
-x^{2}=-8
$$

$$
x^{2}=8
$$

$$
x= \pm \sqrt{8}
$$

$$
x= \pm 2 \sqrt{2}
$$

$$
(2 \sqrt{2}, 0),(2 \sqrt{2}, 0)
$$

$$
f(0)=\frac{8}{-9} \leadsto\left(0,-\frac{8}{9}\right)
$$

E

12.3 Graphs of Rational Functions and Rational Inequalities

Find oblique asymptote of
sketch the graph of the f_{n}.
Degree of mumenatos is GREAER than that of denomisator.

$$
\frac{\mathcal{D}=\mathbb{R} \backslash\{0\}}{V A \cdot \text { is } x=0}
$$ Use Division to fad oblique Asgmp tote

HA: NONE!
O.A.A \rightarrow OO.
(1) $\frac{x \sqrt{r}}{x+0 x+1}$

$$
\begin{equation*}
\frac{x^{2}+1}{x}=\frac{x^{2}}{x}+\frac{1}{x}=x+\frac{1}{x} \tag{2}
\end{equation*}
$$

$$
f(x)=\frac{-\left(x^{2}\right.}{1}
$$

(3)

UPSHOT:

011	0	1
	0	0
1	0	1
x	c	r

${ }^{\prime} O, A$.

$$
y=x
$$

$$
i=1 .
$$

Maple/ Graphing Calculator say
$f(x)=0$ when

$$
x \approx 2.39138290,-2.164247938,0.7728655577
$$

3 zeros, degree $3\left(-x^{3}+x^{2}+5 x-4\right)$
All 3 are madtiplicity $m=1$.

$$
f(x) \approx \frac{(x-2.39138)(x+2.16425)(x-.77287)}{(x+2)(x-1)}
$$

For the oblique asymptote Critical:

$$
\begin{aligned}
& x^{2}+x-2 \frac{-x+2 r x}{-x^{3}+x^{2}+8 x-4} \\
& \frac{-\left(-x^{3}-x^{2}+2 x\right)}{\frac{-\left(2 x^{2}+3 x-4\right.}{\left.2 x^{2}+2 x-4\right)}}<\frac{16,-2,77,1,2.39}{-2.16-2,77} 1, \frac{1}{2.39}
\end{aligned}
$$

So $\frac{x^{3}+x^{2}+5 x-4}{x^{2}+x-2}=\frac{x}{-x+2}+\frac{x}{x^{2}+x-2}$
Tells us EB
1 : $>0 . A$ is $y=-x+2$
н From $E B_{0} \quad f(0)=-\frac{4}{-2}=2$

$x=-2 \quad x=1 \quad y=-x+2$

121 3.5 Graphs of Rational Functions and Rational Inequalities

$$
12 \quad w>\frac{w-5}{w-3}
$$

$$
w-\frac{w-5}{w-3}>0
$$

$$
\left(\frac{w}{1}\right)\left(\frac{w-3}{w-3}\right)-\frac{w-5}{w-3}>0
$$

$$
\frac{w^{2}-3 w-(w-5)}{w-3}>0
$$

$$
\frac{w^{2}-3 w-w+5}{w-3}>0
$$

$$
\frac{w^{2}-4 w+5}{w^{-3}}>0
$$

$$
w^{2}-4 w+5=0
$$

$$
a=1, b=-4, c=5
$$

$$
b^{2}=4(a)(c)
$$

$$
=(-4)^{2}-4(1)(5)
$$

$$
=16-20=-4
$$

No neal nooks
n mumeraton.

$$
w=3 i\} \text { only }
$$

citral \#

1213 Graphs of Rational Functions and Rational
Inequalities
1-s 95-114 solve the is equality

$$
5 \frac{w^{2}-w-6}{w-6} \geq 0
$$

From, grist.]
Cubit

$$
\begin{gathered}
\frac{(w-3)(w+2)}{w-6} \geq 0 \\
\frac{-1+1+1+3}{-1 \times 6[-2,3] \cup(6, \infty)}
\end{gathered}
$$

$$
\Rightarrow x \in(-\infty,-8) \cup(-3, \infty)
$$

121 3.5 Graphs of Rational Functions and Rational Inequalities

16

$$
17 x<\frac{3 x-8}{5-x}
$$

$$
\frac{1}{x+2}-\frac{1}{x+3}>0
$$

$$
(x)\left(\frac{5-x}{5-x}\right)-\frac{3 x-3}{5-x}<0
$$

$$
\begin{aligned}
& \left(\frac{1}{x+2}\right)\left(\frac{x-3}{x-3}\right)-\left(\frac{1}{x-3}\right)\left(\frac{x+}{x+}\right. \\
& \frac{x-3-(x+2)}{(x+2)(x-3)}>0
\end{aligned}
$$

$$
\frac{x-3-x-2}{(x+2)(x-3)}>0
$$

$$
\frac{-5}{(x+2)(x-3)}>0
$$

$$
\begin{aligned}
& f(0)=\frac{-8}{-5}=\frac{8}{5}(11+4 \\
& x \in(-\infty,-2) \cup(4,5)
\end{aligned}
$$

These inequalities are grist for graphing exercise.
The earlier graphs are grist for exercise on inequalities.
Go ahead and build questions off these questions, until you are confident of your mastery.

121 3.5 Graphs of Rational Functions and Rational

