12153.3

$$
\begin{aligned}
& (x-3 i)(x+3 i)=x^{2}-(30)^{2}=\frac{x^{2}=-1}{(2-b)(2+b)=e^{2} b^{2}}=\frac{x^{2}+9}{(x-(1+\sqrt{2})(x-(1-\sqrt{2}))} \\
& =x^{2}-(1-\sqrt{2}) x-(1+\sqrt{2}) x+(1+\sqrt{2})(1-\sqrt{2}) \\
& = \\
& =x^{2}-x+\sqrt{2} x-x-\sqrt{2} x+i^{2}-(\sqrt{2})^{2} \ll \\
& =x^{2}-2 x+1-2=\left(x^{2}-2 x-1\right.
\end{aligned}
$$

3
M

$$
\begin{aligned}
& 1=x^{2}-(3-2 i) x-(3+2 i) x+(3+2 i)(3-2 i) \\
& =x^{2}-3 x+2 i x-3 x-2 i x+3^{2}-(2 i)^{2} \\
& =x^{2}-6 x+9-4 i 2 \\
& =x^{2}-6 x+9+4 \\
& =x^{2}-6 x+13
\end{aligned}
$$

M2

$$
\begin{aligned}
& 12(x-3-2 i)(x-3+2 i) \\
& =x^{2}-3 x+2 i x-3 x+9-6 i-2 i x+6 i-4 i 2 \\
& = \\
& =x^{2}-6 x+9+4 \\
& =x^{2}-6 x+13
\end{aligned}
$$

(121) 5 3,3.

Fid polynomial regin with real coefficients that has the given roots $-3,5=(x+3)(x-5)=0$
$50, i \sqrt{3}:$

TCPT stand
Theorem.
$\left(\begin{array}{r}6 \\ 6\end{array}(x-3)(x-(1-i))(x-6+i)\right)=0$
(7) $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}:\left(x-\frac{1}{2}\right)\left(x-\frac{1}{3}\right)\left(x-\frac{1}{4}\right)=0$
$201 \quad \$ 3.3$.
Degearte's rule of signs only.
$\square^{\cap} f(x)=x^{3}+5 x^{2}+7 x+1=0$

- sign changes 0 positive roots

$$
f(x)=\underbrace{-x^{3}+5 x^{2}-7 x+1}_{2}
$$

3 on 1 megatrue nootka
For Fum:

$$
\begin{aligned}
& u=y^{2} \\
& u^{2}+5 y+7=0 \\
& u^{2}+5 u=-7 \\
& u^{2}+5 u+\left(\frac{5}{2}\right)^{2}=-7+\frac{25}{4} \\
& \left(4+\frac{5}{2}\right)^{2}=-\frac{3}{4} \\
& u+\frac{5}{2}= \pm \sqrt{-\frac{3}{4}}= \pm \frac{i \sqrt{3}}{2} \\
& u=\frac{-5 \pm i \sqrt{3}}{2}=y^{2}
\end{aligned}
$$

(4 montreal.)
$10 \quad x^{5}+x^{3}+5 x=0$
To find y, weld have to have some notion of

$$
\pm \sqrt{\frac{-5 \pm i \sqrt{3}}{2}} \text { which }
$$

we don it, because we'ne mot taknog complex Analyse.
$12+\$ 33$
Right here is where there was going to be a theorem on bounds on real roots question. We'll spend minimal time on it. Not a time-saver, typically, on a time-controlled test. All I want to say about it is If you're checking a positive number out and the bottom row of the synthetic division is all positive numbers, you don't have to look for any bigger, positive zeros (to the right); and, if you're checking a negative number out and the bottom row of the synthetic division is alternating signs, you don't have to look for anything more negative (nothing to the left).

Use thus on roots to field
all neal of inagiony roots
11

$$
x^{3}-4 x^{2}-7 x+10=0 \quad p^{\prime}=10
$$

Descartés: 2 or 0 pos. q 's:1

$$
f(-x)=-x^{3}-4 x^{2}+7 x+10 \quad \frac{p}{q}:: \pm 1, \pm 2, \pm 5, \pm 10
$$

one reg.

1) $1-4-7-70$

$$
\begin{aligned}
& x^{2}-3 x-10=0 \\
& (x-5)(x+2)=0 \\
& x=-2, x=5
\end{aligned}
$$

zeros: $x=-2,1,5$
each multiploity $=1$

* you can always clobber the quachatic will ferula o completing the square.

$$
\begin{aligned}
\therefore(f(x)= & (x-1)(x+2)(x-5) \\
& \text { see sketch } @) \text { end }
\end{aligned}
$$

$20183 / 3$
$12(x)=x^{4}+2 x^{3}-7 x^{2}+2 x-8$ set 0

$$
\begin{array}{ll}
p^{\prime}: 8 & E: s \\
g^{\prime}: 1 & q
\end{array} \quad \pm 2, \pm 4,8
$$

Descarte's \%
$\begin{array}{llllll}1 & 2 & -7 & 2 & -8\end{array}$ 3 or 1pos.

$$
f(-x)=x^{4}-2 x^{3}-7 x^{2}-2 x-8
$$

3or 1 meg.

$$
f(x)=(x-2)(x+4)(x-i)(x+1)
$$

seesketch@end
$1366 x^{3}+25 x^{2}-24 x+5=0$

$$
\text { per. } 5 \text { ess } \pm 1 \pm \frac{1}{2} \pm \frac{1}{3} \pm \frac{1}{6}
$$

$$
q^{\prime} 5: 6 \quad q \quad \pm 5, \pm \frac{5}{2} \pm \frac{5}{3}, \pm \frac{5}{6}
$$

$$
\begin{aligned}
& z \mu 03 \frac{1}{3}, \frac{1}{2},-5 \\
& m=1 \quad \forall \\
& f(x)=6(x-5)\left(x-\frac{1}{3}\right)\left(x-\frac{1}{2}\right) \\
& =(x+5)(3 x-1)(2 x-1) \\
& \text { for stgle } p^{k}
\end{aligned}
$$

-516	25	-24	5
-30	25	-5	
6	-5	1	0

$$
\begin{array}{cl}
\begin{array}{cc}
6-5 & 0 \\
6 x^{2}-5 x+1=0 & x
\end{array} & =\frac{-b \pm \sqrt{124 x}}{22} \\
a=6, b=-5, c=1 & =\frac{5 \pm 1}{2(6)}=\frac{5 \pm 1}{12}<\frac{4}{12}=\frac{1}{3} \\
b^{2}-4 a c=(-5)^{2}-4(6)(1) & \\
& =25-24=1 \sim \sqrt{12}
\end{array}
$$

$121 \$ 3.3$
$x^{14}+2 x^{3}-3 x^{2}-4 x+4=f(x)$ seto

$$
\begin{array}{ll}
p=r & p, s: \pm 1, \pm 2, \pm 4 \\
q^{\prime} s, 1
\end{array} \quad q ;
$$

Descartos 2 or 0 pos

$$
f(-x)=x^{4}-2 x^{3}-3 x^{2}+4 x+4
$$

20 mag .
I $1 \quad 2 \quad-3 \quad-4 \quad 4 \quad(x-1)\left(x^{3}+3 x^{2}-4\right)$

1	3	0	-4	
1	3	0	-4	0

$1 \quad 4 \quad 4$
$\begin{aligned} & 1 \\ & x^{2}+4 x+4=0 \\ & (x+2)^{2}=0\end{aligned} \quad(x-1)^{2}\left(x^{2}+4 x+4\right)$
$(x-1)^{2}(x+2)^{2}$

$$
x+2= \pm 0
$$

$x=-2, m=2$

$$
2 \cos x=-1, x=2
$$

$$
m=2 \forall
$$

121593.

15

$$
x^{5}+3 x^{3}+2 x=f(x) \text { set } 0
$$

Takes some doris!

$$
\begin{aligned}
& x\left(x^{4}+3 x^{2}+2\right)=0 \\
& x=0 \text { or } x^{4}+3 x^{2}+2=0
\end{aligned}
$$

Our work will show that $\pm 1, \pm 2$ from Rational zeros Theorem is mo helpo What, then? RECOGNIzE $x^{4}+3 x^{2}+2$ is "Quachatic in form."
Let $u=x^{2}$, then

$$
\begin{aligned}
& u^{2}+3 u+2=0 \\
& (u+2)(u+1)=0
\end{aligned}
$$

$u=-2$ ore $u=-1$

$$
\begin{aligned}
& x^{2}=-2 \\
& x= \pm \sqrt{-2}= \pm i \sqrt{2}
\end{aligned}
$$

$$
x^{2}=-1
$$

$$
x= \pm \sqrt{-1}
$$

$$
= \pm
$$

Euros?

$$
x=0, \pm i \sqrt{2}, i
$$

$f(x)$ factors as $(x \cdot(x-i)(x+i)(x-i \sqrt{2})(x+i \sqrt{2})$
sea sketches.
Notice that the nonreal zeros have no expression in the graph. The graph is real. The nonreal zeros? Well, they ain't!

121 S3.3 Sketches.

Sketch
for \#11

$$
\begin{array}{cc}
f(x)=(x-1)(x+2)(x-5)= & x^{3}-4 x^{2}-7 x+10 \\
f(0)=10 \sim(0,10) & \text { Eos.: } x^{3}
\end{array}
$$

 3 rough sketel
$E B$ gave me. The rest from alternating signs.
.Sketch

$$
f(x)=x^{4}+2 x^{3}-7 x^{2}+2 x-8=(x-2)(x+4)(x-i)(x+i)
$$

$x= \pm i$ has no expression is the graph

$$
\begin{aligned}
& f(0)=-8-(0,-8) \\
& x^{4} \uparrow \ldots \lambda
\end{aligned}
$$

Notice that ONLY THE REAL ZEROS CORRESPOND TO X-INTERCEPTS IN THIS REAL GRAPH. NON-REAL ZEROS ARE OF THEORETICAL INTEREST IN ALGEBRA AND YOU'LL SEE THEM AGAIN IN DIFFERENTIAL EQUATIONS AND UPPER DIVISION APPLIED MATH.
$121 S^{4} 3 \sqrt{1}$ Exiting
Sketch
for \#13

alternate becansp all multiplicities are I and 1 s odd.

$$
\begin{aligned}
& \text { Sketch } \\
& \text { for \#14 }
\end{aligned} f(x)=x^{4}+2 x^{3}-3 x^{2}-4 x+4=(x-1)^{2}(x+2)^{2}
$$

$$
\begin{gathered}
f(0)=4 \leadsto(0,4) \\
x^{4}: \uparrow \ldots 1
\end{gathered}
$$

Never cases $x-a x \sin$
$x=1, m=2$ Touch (not cross)

$$
x=2, m=2 \text { Touch }
$$

Sketch
for \#15

All we know is
it cases x-axis $O x=0$ its end behavion

