\#s 1-3 Multiply (expand) and simplify.

1. $(x-3 i)(x+3 i)$
2. $(x-(1+\sqrt{2}))(x-(1-\sqrt{2}))$
3. $(x-(3+2 i))(x-(3-2 i))$
\#s 4-7 Find a polynomial in factored form that will have real coefficients when expanded (multiplied out) and has the zeros described. Do not expand.
4. $x=-3 ; x=5$
5. $x=0 ; x=i \sqrt{3}$
6. $x=3 ; x=1-i$
7. $x=\frac{1}{2} ; x=\frac{1}{3} ; x=\frac{1}{4}$
\#s 8 - 10 Use Descartes' Rule of Signs to determine the possible number of positive and negative zeros
8. $f(x)=x^{3}+5 x^{2}+7 x+1$
9. $f(y)=y^{4}+5 y^{2}+7$
10. $f(x)=x^{5}+x^{3}+5 x$
\#s 11-15 Use the Theorems you have, thus far, to find all real and nonreal roots of the given polynomial. Then split the polynomial into linear factors (I.e., Factor over the complex numbers.).
11. $x^{3}-4 x^{2}-7 x+10$
12. $x^{4}+2 x^{3}-7 x^{2}+2 x-8$
13. $6 x^{3}+25 x^{2}-25 x+5$
14. $x^{4}+2 x^{3}-3 x^{2}-4 x+4$
15. $x^{5}+3 x^{3}+2 x$

It's good practice to sketch these, once you have them factored. This is an option for a student wanting more practice.

