1. Find the Quotient and Remainder when $s^{4}-3 s^{2}+6$ is divided by $s^{2}-5$, using ordinary (long) division. (Synthetic Division only works for divisors that are linear, i.e., $1^{\text {st }}$-degree polynomials. Interpret your work by writing Dividend $=($ Divisor $)($ Quotient $)+$ Remainder.
\#s $2-5$ Use synthetic division to find the quotient and remainder when the first polynomial is divided by the second.
2. $x^{2}+4 x+1 ; x-2$
3. $-x^{3}+x^{2}-4 x+9 ; x+3$
4. $4 x^{3}-5 x+2 ; \quad x-\frac{1}{2}$
5. $2 a^{3}-3 a^{2}+4 a+3 ; a+\frac{1}{2}$
\#s 6, 7 Given $f(x)=x^{5}-1$ and $g(x)=x^{3}-4 x^{2}+8$, find the functional values using synthetic division.
6. $f(1)$
7. $g\left(-\frac{1}{2}\right)$
\#s 8, 9 Determine if the binomial is a factor of the given (higher-degree) polynomial. If it is, then factor completely.
8. $x+3 ; x^{3}+4 x^{2}+x-6$
9. $x-4 ; x^{3}+4 x^{2}-17 x-60$
\#s 10,11 Determine if the given number is a zero of the given polynomial.
10. 3; $f(x)=2 x^{3}-5 x^{2}-4 x-3$
11. $-2 ; g(d)=d^{3}+2 d^{2}+3 d+1$
\#s 12, 13 Find all possible rational zeros, with Rational Zeros Theorem. Then stop.
12. $f(x)=x^{3}-9 x^{2}+26 x-24$
13. $h(x)=x^{3}-x^{2}-7 x+15$
\#s 14-19 Find all real and nonreal zeros. Write the polynomial in factored form. Some of these will stretch your notion of what 'factored' means, even beyond 3.2. You're already started on \#14 and 15, with \#12 and 13.
14. $f(x)=x^{3}-9 x^{2}+26 x-24$
15. $h(x)=x^{3}-x^{2}-7 x+15$
16. $m(x)=x^{3}+4 x^{2}+4 x+3$
17. $M(t)=18 t^{3}-21 t^{2}+10 t-2$
18. $V(x)=x^{4}+2 x^{3}-x^{2}-4 x-2$
19. $f(x)=\left(x^{2}-4 x+1\right)\left(x^{3}-9 x^{2}+23 x-15\right)$
\#s 20 - 22 Use division to write the rational function (which is in the form $\frac{\text { Dividend }}{\text { Divisor }}$) in the form Quotient $+\frac{\text { Remainder }}{\text { Divisor }}$.
20. $f(x)=\frac{2 x+1}{x-2}$
21. $f(a)=\frac{a^{2}-3 a+5}{a-3}$
22. $f(c)=\frac{c^{2}-3 c-4}{c^{2}-4}$
