121 Writing Protect \# \#
$\left(10\right.$ pis $3 x-y=0 \rightarrow \begin{array}{l|l}x & y \\ \hline 0 & -6 \\ 2 & 0\end{array}$

$$
\begin{aligned}
& 3 x-y=6(4,0) \Rightarrow y=3 x-6 \\
& 2 x+y=8
\end{aligned}
$$

$$
\begin{gathered}
2 x+(3 x-6)=8 \\
2 x+3 x-6=8 \\
5 x=14 \\
x=\frac{14}{5} \Longrightarrow \\
(x, y)=\left(\frac{14}{5}, \frac{12}{5}\right)
\end{gathered}
$$

$$
\begin{aligned}
& x=14 \\
& x=\frac{14}{5} \Longrightarrow y=3\left(\frac{14}{5}\right)-6 \\
&-42-30
\end{aligned}
$$

$$
=\frac{42}{5}-\frac{30}{5}=\frac{12}{5}
$$

$$
y=\frac{12}{5}
$$

121 Wp \#4
(1) c) 10 pts

$$
\begin{aligned}
& 3 x-y=6 \\
& 2 x+y=8
\end{aligned}
$$

$$
\begin{array}{rl}
-2 R 1 & -6 x+2 y \\
3 R 2 & 6 x+3 y
\end{array}=-24
$$

$$
\begin{gathered}
5 y=\frac{12}{5} \begin{array}{l}
y=\frac{12}{5} \\
\frac{(x, y)=\left(\frac{11}{5}, \frac{12}{5}\right)}{} \Rightarrow 3 x-\frac{12}{5}=6 \\
\Rightarrow 3 x=\frac{12+30}{5} \\
3 x=\frac{42}{5} \\
x=\frac{14}{5}
\end{array}
\end{gathered}
$$

121 Wp H

$$
\begin{array}{r}
y-z=-3 \\
2 y-3 z=-7
\end{array}
$$

$$
\left.\begin{array}{rl}
-2 R 2 & -2 y+2 z
\end{array} \begin{array}{rl}
\text { RS } & 2 y-3 z
\end{array}\right)=-79 子 \begin{aligned}
-z & =-1 \\
z & =1
\end{aligned}
$$

$$
\text { Or waite }(x, y, z) \in\{(3,-2,1)\} \leqslant
$$

$$
\begin{aligned}
& y-1=-3 \\
& y=-2 \\
& x+2(-2)=-1 \\
& y=-1
\end{aligned}
$$

Set containing one point

$$
\begin{aligned}
& +2(-2)=-1 \\
& x-4=-1
\end{aligned} \Rightarrow x=3
$$

$$
\begin{aligned}
& 210 p+5 \\
& 3 x+7 y-z=-6 \\
& x+2 y=-1 \\
& 4 x+10 y-3 z=-11 \\
& \Rightarrow x+2 y=-1 \\
& 3 x+7 y-z=-6 \\
& 4 x+10 y-3 z=-11 \\
& -3 R)-3 x-6 y=3 \\
& -4 R 1-4 x-8 y=4 \\
& \text { Rn } \quad 4 x+10 y-3 z=-11 \\
& 2 y-3 z=-7 \\
& -3 R+R^{2} \\
& y-z=-3 \\
& \begin{aligned}
x+2 y & =-1 \\
y-z & =-3
\end{aligned}
\end{aligned}
$$

121 wat
3

$$
\begin{aligned}
x+3 y-2 z & =12 \\
3 x+11 y-5 z & =34 \\
2 x+8 y-3 z & =22
\end{aligned}
$$

(2)
$-3 k 1-3 x-9 y+6 z=-36$
$\underbrace{R 23 x+11 y-5 z=34}_{-3 m+22} \quad \frac{R 3+z=-2}{2 y} \quad-2 R 1+83+8 y-3 z=22$

New system".

$$
\begin{aligned}
x+3 y-2 z & =12 \\
2 y+z & =-2 \\
2 y+z & =-2
\end{aligned}
$$

To see this:

$$
\begin{array}{rl}
-R 2-2 y-z & =2 \\
R 3 \quad 2 y+z & =-2 \\
-R 2+23 & 0
\end{array}
$$

So the new system is

$$
\begin{aligned}
x+3 y-2 z & =12 \\
2 y+z & =-2
\end{aligned}
$$

$$
\begin{aligned}
& 2 y+z=-2 \\
& 2 y=-z-2 \\
& y=\frac{-z-2}{2}=\frac{z+2}{2}=y \\
& x+3\left(-\frac{z+2}{2}\right)-2 z=12
\end{aligned}
$$

121 WPH 4

$$
\begin{aligned}
& \Rightarrow x-\left(\frac{3(z+2)}{2}\right)-2 z=12 \\
& x-\left[\frac{3 z+6}{2}\right]-2 z=12 \\
& x-\left[\frac{3 z}{2}+\frac{6}{2}\right]-2 z=12 \\
& x-\frac{3}{2} z-3-2 z=12 \\
& x-\frac{7}{2} z=15 \\
& x=\frac{z}{2} z+15 \\
&(x, y, z) \in\left\{\left(\frac{3}{2} z+15,-\frac{z+2}{2}, z\right) z \in \mathbb{R}\right\}
\end{aligned}
$$

$-\left(\frac{z+2}{2}\right)=-\left(\frac{z}{2}+\frac{2}{2}\right)=-\frac{1}{2} z-1$ is anothen way to waite y.

$$
\left\{\left.\left(\frac{3}{2} z+15,-\frac{1}{2} z-1, z\right) \right\rvert\, z \in \mathbb{R}\right\}
$$

WP 44
10 pls

$$
\begin{aligned}
z=0 & \Rightarrow(x, y, z)=\left(\frac{3}{2}(0)+15,-\frac{1}{2}(0)-1,0\right) \\
& =(15,-1,0)
\end{aligned}
$$

$$
\begin{aligned}
& z=1 \Rightarrow(x, y, z)=\left(\frac{3}{2}(1)+15,-\frac{1}{2}(1)-1,1\right) \\
&=\frac{\left(\frac{3}{2}+\frac{30}{2},-\frac{1}{2}-\frac{2}{2}, 1\right)}{} \\
&=\left(\frac{33}{2},-\frac{3}{2}, 1\right) \\
& z=-1 \longrightarrow(x, y, z)=\left(\frac{3}{2}(-1)+15,(-1 / 2)(-1)-1,-1\right)
\end{aligned}
$$

$$
=\left(-\frac{3}{2}+\frac{30}{2}, \frac{1}{2}-\frac{2}{2},-1\right)
$$

$$
=\left(\frac{27}{2},-\frac{1}{2},-1\right)
$$

121 WP

4

$$
\begin{aligned}
& x+3 y-2 z=12 \\
& 3 N+11 y-5 z=34 \\
& 2 x+8 y-3 z=23 \\
&-3 R 1-3 x-9 y+6 z=-36 \quad-2 R 1-2 x-6 y+4 z=-24 \\
& R 2 \quad \frac{23}{2 x+11 y-5 z}=34 \\
& 2 y+z=-2 \\
& \text { NEW SYSTEM: }
\end{aligned}
$$

$$
\begin{array}{r}
x+3 y-2 z=12 \\
2 y+z=-2 \\
2 y+z=-1
\end{array}
$$

$$
\begin{array}{rr}
-12 & -2 y-z=2 \\
R 3 & 2 y+z=-1
\end{array}
$$

$$
o=1 ? \text { ABSURD }
$$

$0_{0}^{0} 0$ then is no solution.

