\qquad

You know how to format and write your work. I remind some of my hard workers that you don't have to write out the question

1. (10 pts) Form a polynomial in factored form and minimal possible degree that has real coefficients (after expanding) and will have the given zeros. Do not expand your polynomial. Leave it factored! If you run out of room, you're doing it wrong!
$x=-7$, multiplicity $3 ; \quad x=3-7 i$, multiplicity $1 ; \quad x=5$, multiplicity 1 .

Bonus (5 pts) What is the degree of your answer to \#1?
2. (10 pts) Use synthetic division to find $P(1)$ if $P(x)=x^{5}-7 x^{4}+12 x^{3}+16 x^{2}-37 x-33$.
3. (5 pts) Represent the work you just did on the previous problem by writing $P(x)$ in the form Dividend $=$ Divisor \bullet Quotient + Remainder .
4. Suppose $f(x)=(x+4)^{2}(x-1)(x-5)(x-9)=x^{5}-7 x^{4}-45 x^{3}+187 x^{2}+584 x-720$.

I'm showing you both factored and expanded form to help you answer the following:
a. (5 pts) Use a sign pattern to solve the inequality $f(x)<0$.
b. (5 pts) Provide a rough sketch of f, using its zeros, their respective multiplicities and its end behavior. Include x - and y-intercepts. Your graph should be smooth. Un-exaggerate the vertical for a betterquality graph.
c. (5 pts) What is the domain of $g(x)=\sqrt{\frac{(x-9)(x+4)^{2}}{(x-1)(x-5)}}$?
5. Let $P(x)=x^{5}-7 x^{4}+12 x^{3}+16 x^{2}-37 x-33$. You've seen it, already, in \#2.
a. (5 pts) Use Descartes' Rule of Signs to determine the possible number of positive and negative zeros of P.
b. (5 pts) List all possible rational zeros of P.
6. (10 pts) Find the real zeros of P. Then factor P over the set of real numbers. This should involve an irreducible quadratic factor.
(If things go haywire, come up with (BUILD!) a plausible-looking polynomial, in factored form, with the right number of real roots and 2 nonreal roots. The 2 nonreal roots will still be living inside the irreducible quadratic factor, so you'll have to make up a quadratic factor with nonreal zeros).
7. (5 pts) Find the remaining (nonreal) zeros of P and factor P over the set of complex numbers. This step requires breaking down the quadratic piece that's irreducible over the real numbers. The fundamental theorem tells us that nothing is irreducible over the complex numbers.
(You can still get full credit for this one, even if things went haywire, in \#6, if you work your build, correctly, and display your plausible-looking follow-up to your plausible-looking answer to \#6. The more you know about what you're doing, the more points you'll earn.)

And yes, "plausible" must still always be italicized.
8. (5 pts) You don't need to graph $R(x)=\frac{2 x^{3}-3 x^{2}-3 x+2}{x^{2}-x-6}$, here, but I do want to see you graph its asymptotes. Hint: This function has no holes. Hint: Don't waste time trying to factor the numerator.
9. (10 pts) Sketch the graph of $F(x)=\frac{3 x^{2}-7 x-26}{x^{2}+2 x-15}$. Show all asymptotes and intercepts.

ANSWER ANY THREE (3) OF THE FOLLOWING, FOR UP TO 15 BONUS POINTS!!!

B1 (5 pts) Solve both of the following absolute value inequalities.
a. $|2 x-5|-2 \geq 8$
b. $|2 x-5|-2<8$

B2 (5 pts) Sketch the graph of $R(x)=\frac{2 x^{3}-3 x^{2}-3 x+2}{x^{2}-x-6}$. Hints:
a. You already found $R(x)$'s asymptotes.
b. One of $R(x)$'s x-intercepts is $(2,0)$.

B3 (5 pts) Sketch the graph of $G(x)=\frac{3 x^{3}-28 x^{2}+23 x+182}{x^{3}-5 x^{2}-29 x+105}$. Hint: $G(x)$ looks exactly like $F(x)$, from \#9, except it has a hole.

B4 (5 pts) Re-write $f(x)=7 x^{2}-3 x-10$ in the form $f(x)=a(x-h)^{2}+k$. State its vertex.

B5 (5 pts) Sketch the graph of the piecewise-defined function $f(x)=\left\{\begin{array}{cl}(x+1)^{2} & \text { if } x<1 \\ 2 x-1 & \text { if } x \geq 1\end{array}\right.$.

121 TEST 3 SANing 177
(1)

$$
\begin{aligned}
& x=-7, m=3, x=3-7 i, m=1, \quad x=5, m=1 \\
& f(x)=(x+7)^{3}(x-(3-7 i))(x-(3+7 i))(x-5)
\end{aligned}
$$

B) $\operatorname{deg}(F)=6 \quad 5 p t s$

| 1 | -6 | 6 | 22 | -15 |
| :---: | :---: | :---: | :---: | :---: | | $10 p t s$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

(3) $P(x)=(x-1)\left(x^{4}-6 x^{3}+6 x^{2}+22 x-15\right)-48$
(4) Nent pg.

121
T3
(4)

$$
\begin{aligned}
f(x) & =(x+4)^{2}(x-1)(x-5)(x-9) \\
& =x^{5}-7 x^{4}-45 x^{3}+187 x^{2}+584 x-720
\end{aligned}
$$

(c)

$$
\begin{gathered}
=0=0=0=0 \\
(-\infty,-4) \cup(-4,1) \cup(5, a)
\end{gathered}
$$

(b)

(c) Need $\frac{(x-9)(x+4)^{2}}{(x-1)(x-5)} \geq 0$

5pts

$$
\begin{aligned}
& \Rightarrow \frac{=0}{\{+\xi \cup(1,5) \cup[9, \infty)=D(g)}
\end{aligned}
$$

$121 T 3$
(5) $P(x)=\underbrace{x^{5}=7 x^{4}}_{2}+12 x^{3}+\underbrace{16 x^{2}}_{3}-37 x-33$
(2) Bor 1 positre zeros) (at least one:)

$$
P(-x)=-x^{5}=7 x^{4}-7 \underbrace{72 x^{3}}_{1}+16 x^{2}+\underbrace{37 x}_{2}-33
$$

2 or O negatre zeros

$$
3133
$$

(b) $\frac{p}{q}: \frac{33}{1}$

$$
\pm 1, \pm 3, \pm 11
$$

121 TB
(6) $\pm 1, \pm 3, \pm 11$

Alread did $x=1$ "No"
$\begin{array}{llllllll}-1 & -7 & 12 & 16 & -37 & -33\end{array}$

-1	8	-20	4	33	
1	-8	20	-4	-33	0

3 \begin{tabular}{rrrr}
-1 \& 9 \& -29 \& 33

\hline | $1-9$ | 29 | -33 | 0 |
| ---: | ---: | ---: | ---: |
| 3 | -18 | 33 | 0 | \&

\end{tabular}

DONE WI
negative
GUESSES
(Found 2!)

$$
\begin{aligned}
a=1, b & =-6, c=11 \\
b^{2} 4 a c & =(-6)^{2}-4(1)(11) \\
& =36-44=-8
\end{aligned}
$$

$$
x^{2}-6 x+11
$$

is irreducible
Done with
real roots
zeros: $(x=-1, m=2 ; x=3, m=1$

$$
P(x)=(x+1)^{2}(x-3)\left(x^{2}-6 x+11\right)
$$

Bonus $x=-1$ is lower bound (Altemating Signs) ($x=3$ is smallest)

121 TEST 3
(7)

$$
\begin{gathered}
x^{2}-6 x+11=0 \\
x^{2}-6 x+3^{2}=-11+9 \\
(x-3)^{2}=-2 \\
x-3= \pm \sqrt{2} i \\
x=3 \pm \sqrt{2} i \\
P(x)=(x+1)^{2}(x-3)(x-(3+\sqrt{2} i))(x-(3-\sqrt{2} i))
\end{gathered}
$$

8

$$
\begin{aligned}
& R(x)=\frac{2 x^{3}-3 x^{2}-3 x+2}{x^{2}-x-6}=\frac{\text { STuFF }}{(x-3)(x+2)} \\
& \text { V.A.: } x=-2 \quad x=3
\end{aligned}
$$

O.A.:

$$
y=2 x-1
$$

$$
\begin{gathered}
2 x-1 \\
\frac{-\left(2 x^{3}-2 x^{2}-12 x\right)}{2 x^{3}-3 x^{2}-3 x+2}
\end{gathered}
$$

is O.A.

$121 \quad T 3$
(9) $F(x)=\frac{3 x^{2}-7 x-26}{x^{2}+2 x-15}=\frac{(3 x-13)(x+2)}{(x+5)(x-3)}$

$$
\frac{D=\mathbb{R},\{-5,3\}}{V, A, 1 \quad x=-5, x=3}
$$

y-it? $\left(0, \frac{26}{.5}\right)$

121 TB
(BI)

$$
\text { (a) } \begin{aligned}
& |2 x-5|-2 \geq 8 \\
& |2 x-5| \geq 10
\end{aligned}
$$

$$
\begin{array}{ccc}
2 x-5 \geq 10 & \text { OR } & 2 x-5 \leq-10 \\
2 x \geq 15 & 2 x \leq-5
\end{array}
$$

(b)

$$
\begin{aligned}
& |2 x-5|-2<8 \\
& |2 x-5|<10
\end{aligned}
$$

$2 x-5<10$ and $2 x-5>-10$

$$
\left\{\begin{aligned}
2 x-5 & <10 & \text { and } & 2 x
\end{aligned}\right)
$$

$$
=\left[\left(-\frac{5}{2}, \frac{5}{2}\right)\right.
$$

scratch"

AND

121 T3
$32 R(x)=\frac{2 x^{3}-3 x^{2}-3 x+2}{x^{2}-x-6} \cdot$ HINT:
$x=2$ is zoro

$$
\begin{aligned}
& 21 \begin{array}{ccc}
2 & -3 & -3
\end{array} \\
& \begin{array}{l}
4 \\
2
\end{array} \\
& \hline 1
\end{aligned} \begin{aligned}
& 2 \\
& \hline
\end{aligned}
$$

Citical $H=, \quad x=-2,-1, \frac{1}{2}, 2,3$

O.A.

$$
\begin{aligned}
& x ^ { 2 } - x - 6 \longdiv { 2 x - 1 } \sqrt { 2 x ^ { 3 } - 3 x ^ { 2 } - 3 x + 2 } \\
& \text { So, } \\
& -\frac{\left(2 x^{3}-2 x^{2}-12 x\right)}{-x^{2}} \quad \begin{array}{l}
y=2 x-1 \\
\text { is O.A. }
\end{array}
\end{aligned}
$$

$121 \quad 53$
(B3) $x^{3}-5 x^{2}-29 x+105=(x-3)(x+5)(?)$

$3]$	-5	-29	105
3	-6	-105	
-5$]$	-2	-35	0
	-5	35	

$$
\begin{aligned}
& \text { [5] } \begin{array}{lll}
1 & -2 & -35 \\
-5 & 35
\end{array} \\
& 1 \begin{array}{ll}
1 & -7
\end{array}
\end{aligned}
$$

$\Rightarrow(x-7)$ is the added factor
So $x=7$ is where the hole is and

$$
G(x)=\frac{3 x^{3}-28 x^{2}+23 x+182}{x^{3}-5 x^{2}-29 x+105}
$$

$$
=\frac{(3 x-13)(x+2)(x-7)}{(x-3)(x+5)(x-7)}=G^{*}(x)=\frac{(3 x-13)(x+2)}{(x-3)(x+5)} \text { when } x \neq 7 \text {, where there }
$$

when $x \neq 7$, where there's
a hole \%

$$
\begin{aligned}
& G^{*}(7)=\frac{(21-13)(7+2)}{(7-3)(7+5)} \\
& \left.\left.x^{3}\right)^{3}\right)
\end{aligned}
$$

$$
=\frac{\left.x^{x}\right)^{3}}{(x)(4)}=\frac{3}{2}
$$

HOLE: $\left(7, \frac{3}{2}\right)$
$121 T 3$
(B3) intid

$$
x=-5
$$

$$
x=3
$$

$\begin{array}{r}14 \\ 14 \\ \hline 56 \\ 140 \\ \hline\end{array}$
(B4) $7 x^{2}-3 x-10$

$$
\begin{aligned}
&\left.7 x-3 x-\frac{3}{7} x+\left(\frac{3}{14}\right)^{2}\right)-10-7\left(\frac{9}{96}\right) \\
&=7\left(x-\frac{3}{14}\right)^{2}-\frac{289}{28}=-10-\frac{9}{28} \\
&(h, k)=\left(\frac{3}{14},-\frac{289}{28}\right)=\frac{-280-9}{28} \\
&==\frac{-289}{28} \\
&=(.2142857,10.32(42857)
\end{aligned}
$$

$121 \quad T 3$
(B5) $f(x)= \begin{cases}(x+1)^{2} & \text { if } x<1 \\ 2 x-1 & \text { if } x \geq 1\end{cases}$

