Graph each of the following by transforming a common function. State the domain and range of each. On the test, I will be giving you the LAST of the 3 functions, and you'll be expected to graph it in stages, starting with the common function and performing one move at each stage. I do permit stretching and reflecting to be done in one step. But the idea is to work part b. by making one change to part a . Work part c. by making one change to part b .

1. $f(x)=x^{2}$
a. $g(x)=-2 x^{2}$
b. $g(x)=-2(x+5)^{2}$
c. $g(x)=-2(x+5)^{2}-11$
2. $f(x)=\sqrt{x}$
a. $g(x)=4 \sqrt{x}$
b. $g(x)=4 \sqrt{x-3}$
c. $g(x)=4 \sqrt{x-3}+7$
3. $f(x)=x^{3}$
a. $g(x)=-2 x^{3}$
b. $g(x)=-2(x+5)^{3}$
c. $g(x)=-2(5-x)^{3}$
4. $f(x)=|x|$
a. $\quad g(x)=|x-7|$
b. $\quad g(x)=3|x-7|$
c. $g(x)=3|x-7|+2$
5. Linear functions are special, because you can move the constant multiple inside and out of the function so easily. To graph $g(x)=3 x$, using $f(x)=x$ as the basic function, you can view $g(x)$ as either $3 f(x)$ (vertical stretch by a factor of 3) or as $f(3 x)$ (horizontal shrink by a factor of $1 / 3$). You can't do this with a square root function, $f(x)=\sqrt{x}$ because a $\sqrt{3 x}=f(3 x)$ is not the same as a $3 \sqrt{x}=3 f(x)$.

What I want you to do, here, is graph $g(x)=3 x+2$ in two different ways:
a. Viewing it as $3 f(x)+2$, where $f(x)=x$.
b. Viewing it as $f(3 x)+2$, where $f(x)=x$.

