\qquad

This Project is due Friday, November $16^{\text {th }}$. Neatness, Completeness and Margins count. Show all work.
Face-to-Face Students: This Writing Project is due by the end of class, Friday, November $16^{\text {th }}$.
Online Students: If you can do a quality scan to a single, multi-page PDF, you may submit your work by email in the Course Shell. Use the E-Mail link in the Main Navbar, and attach it to a message to Harry Mills. I'm not accepting submissions to my steve.mills@aims.edu account.

1 Solve the system of linear equations $\begin{aligned} & x-3 y=-9 \\ & 4 x-11 y=-32\end{aligned}$ in 3 ways:
a. (10 pts) Find the general vicinity of the solution by graphing the system. This should at least give you a general idea. Don't worry about it being super-accurate. Just graph the two lines by the intercept method. Supply the exact answer after you work parts b and c, below. Resist the temptation to use tickmarks on the horizontal and vertical axes.
b. (10 pts) Use the Substitution Method
c. (10 pts) Use the Elimination Method.

$$
\begin{aligned}
x+2 y & =-1 \\
3 x+7 y-z & =-6 \\
-2 x-6 y+3 z & =9
\end{aligned}
$$

2. (10 pts) Use Elimination to solve the independent system of linear equations:

$$
x+3 y-2 z=3
$$

3. Solve the dependent system of linear equations: $3 x+7 y-7 z=11$.

$$
2 x+4 y-5 z=8
$$

a. (10 pts) Give the general solution. Be kind to your teacher and let z be free! That means, find an expression for x and y in terms of the variable z.
b. (10 pts) Give the particular solutions corresponding to $z=0, z=1$ and $z=-1$.
4. The Underlying Assumption: All of the techniques we learn for solving systems of linear equations are based on the assumption that the systems have solutions. So when we arrive at a false (absurd!) statement after a few elimination steps, the only explanation is that there was no solution in the first place*. Our incorrect assumption* led to something absurd, like $0=10$ or $0=-5$.
*... or you made a mechanical error and should check your work, just to make sure. Stay organized and always check your work.

Higher Learning: In higher mathematics, this is the most basic method of proving something is false: "Assume it's true and conclude something absurd (like ' $0=1$ ')." It's important that you realize what's happening when you arrive at those absurdities at the end of a perfectly logical and legal sequence of
moves. That said, let me finally get to the question:

$$
x+3 y-2 z=3
$$

(10 pts) Your Task: Show that the dependent system of linear equations $3 x+7 y-7 z=11$

$$
2 x+4 y-5 z=9
$$

has no solution. I expect to see the word "absurd" in your discussion.

