Do your own work on separate paper. Leave plenty of margin and plenty of room around your work. I'm not impressed if you squeeze more work into a smaller space. To the contrary. At the end, please make sure your problems are in order. I'm too old and ornery to want to go on a scavenger hunt to award you points.

1. (20 pts) Starting with $f(x)=3^{x}$, sketch the graph of $g(x)=-2 \cdot 3^{6 x+18}+4$ in 5 steps (counting $f(x)=3^{x}$ as the first step). Use $x=-1, x=0$, and $x=1$ to find 3 points in the first graph, and show how these 3 points are moved around by each step in the transformation to $g(x)$.
2. (10 pts) Find the exact x - and y-intercepts for $f(x)$ from \#1.
3. Let $f(x)=\sqrt{x-6}$ and $g(x)=x^{2}+x-6$.
a. (5 pts) What is the domain of f ?
b. (5 pts) What is the domain of g ?
c. (5 pts) Determine $\left(\frac{g}{f}\right)(x)$. (Sometimes just called " $\frac{g}{f}$ " in the text.). Do not simplify.
d. (5 pts) What is the domain of $\left(\frac{g}{f}\right)(x)$?
e. (5 pts) Determine $(f \circ g)(x)$ (Again, sometimes just called $f \circ g$)
4. (5 pts) What is the domain of $\sqrt{\frac{(x-3)(x+5)^{3}}{(x-4)^{2}}}$?
5. (5 pts) What is the domain of $\ln \left(\frac{(x-3)(x+5)^{3}}{(x-4)^{2}}\right)$?
6. (10 pts) Let $f(x)=2^{5 x-2}-8$. Find $f^{-1}(x)$.
7. (10 pts) Solve $\ln (x-3)+\ln (x+2)=\ln (2 x+4)$.
8. Suppose the half-life of C-14 is 5500 years. (It isn't, quite, but just suppose...).
a. (10 pts) Derive the exponential decay model, $A(t)=A_{0} e^{k t}$. The trick is to use the half-life to find the relative decay rate, k.
b. (5 pts) How old is a sample of charcoal from a prehistoric fire pit, if 37% of the $\mathrm{C}-14$ has decayed (i.e., 63% is left.) ? Round to the nearest year in your final answer.

Bonus Answer up to three (3) 5-pointers. That's a total of 15 bonus points possible.
B 1 (5 pts) Solve the absolute value inequality: $|-5 x+8|-11>-2$

B 2 (5 pts) Re-write $f(x)=5 x^{2}-3 x+1$ in the form $a(x-h)^{2}+k$.

B 3 (5 pts) Solve the exponential equation $3 \cdot(7.7)^{x}=11 \cdot(2.1)^{x}$

B 4 John can finish a job in 6 hours that it takes Bill 11 hours to finish. Suppose Bill shows up and starts working 2 hours before John shows up, and then they work together until the job is done. How many hours does each of the two end up working?

B 5 Find the geometric sums:
a) $(5 \mathrm{pts}) 1+49+343++\ldots \ldots+5,764,801$
b) $(5 \mathrm{pts}) \sum_{n=1}^{\infty} 5 \cdot\left(\frac{2}{7}\right)^{n-1}$

B6 (5 pts) Prove that $\sum_{k=1}^{n} a \cdot r^{k-1}=a\left(\frac{1-r^{n}}{1-r}\right)$

B 7 What's the domain of $(f \circ g)(x)$ from problem \#2e, above?

