\qquad

1. (15 pts) Starting with $f(x)=\log _{3}(x)$, sketch the graph of $g(x)=4 \cdot \log _{3}(x+2)-3$ in 4 steps (counting $f(x)=\log _{3}(x)$ as the first step). Use $x=\frac{1}{3}, x=1$, and $x=3$ to find 3 points in the first graph, and show how these 3 points are moved around by each step in the transformation to $g(x)$. Finding the x - and y intercepts is a separate problem, so don't worry about them, on this page.
2. Let $f(x)=\sqrt{2 x+4}$ and $g(x)=\frac{x-2}{x-7}$.
a. (5 pts) What is the domain of f ?
b. (5 pts) What is the domain of g ?
d. (5 pts) Write the function $f \circ g$. Do not simplify.
e. (10 pts) What is the domain of $\frac{f}{g}$?
3. (5 pts) Let $g(x)=4 \cdot \log _{3}(x+2)-3$. Find the x - and y-intercepts for this function, rounded to 4 decimal places. For 5 bonus points, label these intercepts on your final graph on page 1.
4. Find the domain:
a. $(5 \mathrm{pts}) \sqrt{\frac{(x-5)^{2}(x-11)^{3}}{(x+1)^{5}(x+3)}}$
b. $\quad(5 \mathrm{pts}) \log _{3}\left(\frac{(x-5)^{2}(x-11)^{3}}{(x+1)^{5}(x+3)}\right)$ (Reinterpret previous work and write the answer.
5. (5 pts) Solve $\log (x-7)+\log (x+2)=1$
6. (5 pts) Solve $3^{x^{2}-8} \cdot 3^{-3 x}=9$

Solve any two (2) Bonus problems for up to 10 points. I'll grade the first two I come to.

1. BONUS (5 pts) Solve the absolute value inequality $|2 x-7|<8$
2. BONUS (5 pts) Find the inverse function for $f(x)=\sqrt{2 x+8}+11$. Then state the
 domain and range for both f and f^{-1}.
3. BONUS (5 pts) Re-write the function $g(x)=3 x^{2}+6 x-19$ in the form $g(x)=a(x-h)^{2}+k$. State the vertex of this parabola.
4. BONUS (5 pts) Write the formula for the piecewise-defined function shown on the right.

