$\qquad$
Due Monday, November $17^{\text {th }}$. I will have zero patience for stapling during class time. I will have zero tolerance for late work.

Use separate paper to do the work on this take-home test. Make sure your pencil work is dark. It's a struggle for me to read faint print, and I'm done with it costing me time and stress. If I can't read it, easily, that's a zero, and I'm moving on.

1. (5 pts) Starting with $f(x)=4^{x}$, sketch the graph of $g(x)=2 \cdot 4^{-3 x-3}-9$ in 5 steps (counting $f(x)=4^{x}$ as the first step). Use $x=-1, x=0$, and $x=1$ to find 3 points in the first graph, and show how these 3 points are moved around by each step in the transformation to $g(x)$. Include asymptote and the $x$ - and $y$ intercepts. Give exact coordinates for intercepts, then round to 4 decimal places.
2. ( 5 pts ) Starting with $h(x)=\log _{4}(x)$, sketch the graph of $w(x)=-2 \log _{4}(x+9)-7$ in 4 steps (counting $h(x)=\log _{4}(x)$ as the first step.) Use $x=1 / 4, x=1$, and $x=4$ to find 3 points in the first graph, and show how these 3 points are moved around by each step in the transformations to $w(x)$. Include asymptote and the $x$ and $y$-intercepts. Give exact coordinates of intercepts, then round to 4 decimal places.
3. Let $f(x)=\sqrt{2 x+4}$ and $g(x)=\frac{x-2}{x-7}$.
a. (5 pts) What is the domain of $f$ ?
b. (5 pts) What is the domain of $g$ ?
c. (5 pts) Write the function $\frac{g}{f}$. Do not
d. (5 pts) Write the function $g \circ f$. Do not simplify. simplify.
e. (5 pts) What is the domain of $\frac{g}{f}$ ?
f. (5 pts) What is the domain of $g \circ f$ ?
4. Find the domain:
a. $(5 \mathrm{pts}) \sqrt{\frac{(x-3)(x+4)^{2}}{(x-8)^{4}(x+6)}}$
b. $(5 \mathrm{pts}) \log _{3}\left(\frac{(x-3)(x+4)^{2}}{(x-8)^{4}(x+6)}\right)$
5. (5 pts) Re-write $\ln \left(\frac{\sqrt[5]{x^{2} y}}{t^{3 / 4}}\right)$ as a sum or difference of multiples of (simpler) logarithms.
6. (5 pts) Re-write $3 \log _{4}\left(x^{2}\right)-\log _{4}\left(x^{3}\right)+2 \log _{4}(\sqrt[4]{x})$ as a single logarithm.
7. ( 5 pts ) The half-life of a radioactive isotope is 100 years. How old is a sample of that isotope if $93 \%$ of it has decayed into other by-products?
8. ( 5 pts ) How much should I put into an account earning $7 \%$ APR, compounded weekly, if I want to have $\$ 10,000$ in the account in 5 years?
9. BONUS (5 pts) Find the inverse function for $f(x)=\sqrt{2 x-6}+1$. Then state the domain and range for both $f$ and $f^{-1}$.
10. BONUS (5 pts) Re-write the function $g(x)=5 x^{2}+10 x-19$ in the form $g(x)=a(x-h)^{2}+k$. State the vertex of this parabola.
