60 pts

Due Monday, November 17th. I will have *zero* patience for stapling during class time. I will have zero tolerance for late work.

Use separate paper to do the work on this take-home test. Make sure your pencil work is *dark*. It's a struggle for me to read faint print, and I'm done with it costing *me* time and stress. If I can't read it, easily, that's a zero, and I'm moving on.

- 1. (5 pts) Starting with $f(x) = 4^x$, sketch the graph of $g(x) = 2 \cdot 4^{-3x-3} 9$ in 5 steps (counting $f(x) = 4^x$ as the first step). Use x = -1, x = 0, and x = 1 to find 3 points in the first graph, and show how these 3 points are moved around by each step in the transformation to g(x). Include asymptote and the x- and y-intercepts. Give *exact* coordinates for intercepts, then round to 4 decimal places.
- 2. (5 pts) Starting with $h(x) = \log_4(x)$, sketch the graph of $w(x) = -2\log_4(x+9) 7$ in 4 steps (counting $h(x) = \log_4(x)$ as the first step.) Use $x = \frac{1}{4}$, x = 1, and x = 4 to find 3 points in the first graph, and show how these 3 points are moved around by each step in the transformations to w(x). Include asymptote and the x-and y-intercepts. Give *exact* coordinates of intercepts, then round to 4 decimal places.
- 3. Let $f(x) = \sqrt{2x+4}$ and $g(x) = \frac{x-2}{x-7}$.
 - a. (5 pts) What is the domain of f?
 - c. (5 pts) Write the function $\frac{g}{f}$. Do not simplify.
 - e. (5 pts) What is the domain of $\frac{g}{f}$?

- b. (5 pts) What is the domain of g?
- d. (5 pts) Write the function $g \circ f$. Do not simplify.
- f. (5 pts) What is the domain of $g \circ f$?

4. Find the domain:

a. (5 pts)
$$\sqrt{\frac{(x-3)(x+4)^2}{(x-8)^4(x+6)}}$$

b.
$$(5 \text{ pts}) \log_3 \left(\frac{(x-3)(x+4)^2}{(x-8)^4(x+6)} \right)$$

- 5. (5 pts) Re-write $\ln \left(\frac{\sqrt[5]{x^2 y}}{t^{3/4}} \right)$ as a sum or difference of multiples of (simpler) logarithms.
- 6. (5 pts) Re-write $3\log_4(x^2) \log_4(x^3) + 2\log_4(\sqrt[4]{x})$ as a single logarithm.
- 7. (5 pts) The half-life of a radioactive isotope is 100 years. How old is a sample of that isotope if 93% of it has decayed into other by-products?
- 8. (5 pts) How much should I put into an account earning 7% APR, compounded weekly, if I want to have \$10,000 in the account in 5 years?
- 1. **BONUS** (5 pts) Find the inverse function for $f(x) = \sqrt{2x-6} + 1$. Then state the domain and range for both f and f^{-1} .
- 2. **BONUS** (5 pts) Re-write the function $g(x) = 5x^2 + 10x 19$ in the form $g(x) = a(x h)^2 + k$. State the vertex of this parabola.