1. (15 pts) Starting with $f(x) = 4^x$, sketch the graph of $g(x) = 2 \cdot 4^{x-3} - 9$ in 4 steps (counting $f(x) = 4^x$ as the first step). Use x = -1, x = 0, and x = 1 to find 3 points in the first graph, and show how these 3 points are moved around by each step in the transformation to g(x). Finding the x- and y-intercepts is a separate problem, so don't worry about them, on this page.

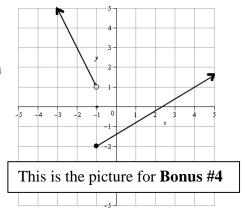
- 2. Let $f(x) = \sqrt{2x+4}$ and $g(x) = \frac{x-2}{x-7}$.
 - a. (5 pts) What is the domain of f?

- c. (5 pts) Write the function $\frac{f}{g}$. Do not simplify.
- e. (10 pts) What is the domain of $\frac{f}{g}$?

b. (5 pts) What is the domain of g?

d. (5 pts) Write the function $f \circ g$. Do not simplify.

3. (5 pts) Let $g(x) = 2 \cdot 4^{x-3} - 9$. Find the *x*- and *y*-intercepts for this function, rounded to 4 decimal places. For 5 **bonus** points, label these intercepts on your final graph on page 1.


4. Find the domain:

a. (5 pts)
$$\sqrt{\frac{(x-2)(x+3)^2}{(x-7)^4(x+5)}}$$

- b. $(5 \text{ pts}) \log_3 \left(\frac{(x-2)(x+3)^2}{(x-7)^4(x+5)} \right)$ (Reinterpret previous work and write the answer.
- 5. (5 pts) Solve $\log_7(x-4) + \log_7(x+2) = 1$
- 6. (5 pts) Solve $2^{x^2-8} \cdot 2^{-3x} = 4$

Solve any two (2) Bonus problems for up to 10 points. I'll grade the first two I come to.

- **1. BONUS** (5 pts) Solve the absolute value inequality $|2x-7| \ge 8$
- 2. **BONUS** (5 pts) Find the inverse function for $f(x) = \sqrt{2x-6} + 1$. Then state the domain and range for both f and f^{-1} .
- **3. BONUS** (5 pts) Re-write the function $g(x) = 5x^2 + 10x 19$ in the form $g(x) = a(x-h)^2 + k$. State the vertex of this parabola.

4. BONUS (5 pts) Write the formula for the piecewise-defined function shown, above right.