1. Consider the relation $f=\{(-2,3),(1,5),(2,3),(3,-2)\}$.
a. (5 pts) Is f a function?
b. (5 pts) What is the domain of f ?
c. (5 pts) What is the range of f ?
d. (5 pts) Is f one-to-one? If not, explain why not.
2. Let $f(x)=\sqrt{x-2}$ and $g(x)=\frac{x-7}{x+5}$.
a. (5 pts) Write the function $\frac{f}{g}$. Do not simplify.
b. (5 pts) What is the domain of $\frac{f}{g}$?
c. (5 pts) Write the function $f \circ g$. Do not simplify.
d. (5 pts) What is the domain of $f \circ g$?
3. (5 pts) Simplify the difference quotient for $f(x)=2 x^{2}-3 x$.

Bonus (5 pts) Pass to the limit as h approaches zero, and show me some calculus to go with \#4.
5. (5 pts) Draw a picture for the difference quotient for $f(x)=\sqrt{x}$. Describe what the difference quotient represents, in words. Do not simplify your difference quotient. That's a bonus problem, later on.
6. Let $g(x)=-\sqrt{10-5 x}+7$.
a. (10 pts) Sketch the graph of $g(x)$, by transforming the basic function $f(x)=\sqrt{x}$. I want to see 3 points labeled in the graph of g - preferably starting with $(0,0),(1,1)$ and $(4,2)$ - and track where those points are moved to after every step, as demonstrated in class.
b. (5 pts) State the domain and range of $g(x)$, based on your final graph.
c. (5 pts) Find the x - and y-intercept of $g(x)$, and label them, clearly, on the graph.
7. (10 pts) Sketch the graph of $r(x)=2(x-3)^{2}-5$ by transforming the basic function $f(x)=x^{2}$. I want to see 3 points labeled in the graph of f, and I want you to track where those points are moved to after every step, as demonstrated in class.
8. (5 pts) Find the x - and y-intercepts and add them to your final sketch, above. For x-intercept, leave final answer in simplified radical form.
9. (5 pts) Prove that $\frac{x+1}{x-3}$ is one-to-one.
10. (5 pts) Suppose y is jointly proportional to the square of x and the cube of z, and inversely proportional to u and the square root of w. Write an equation for this relationship between y, x, z, u, and w.
11. (5 pts) Explain why $x^{2}+y^{2}=81$ does not define y as a function of x.

Answer two of the following for Bonus (5 pts each)
B1: Simplify the difference quotient for the function $f(x)=\sqrt{2 x}$. Then pass to the limit, as h approaches zero.

B2: Complete the square to re-write the function $h(x)=5 x^{2}-3 x+2$ in the form $a(x-h)^{2}+k$. What is the vertex?

B3: What is the domain of $r(x)=\frac{x-5}{x^{2}-5 x+6}$?
B4: What is the domain of $w(x)=\frac{x^{77}-5 x^{12}+17 x}{\sqrt{5-10 x}}$
B5: Prove that $g(x)=-\sqrt{10-5 x}+7$ is 1-to-1.
B6: Given $g(x)=-\sqrt{10-5 x}+7$, find what $g^{-1}(x)$ is. (Hint : $\left.(-x+7)^{2}=(x-7)^{2}\right)$
B7: Given $g(x)=-\sqrt{10-5 x}+7$, find the domain and range of $g^{-1}(x)$.

