Covers Chapter 2

- 1. Consider the relation $f = \{(-2,3), (1,5), (2,3), (3,-2)\}$.
 - a. (5 pts) Is f a function?
 - b. (5 pts) What is the domain of f?
 - c. (5 pts) What is the range of f?
 - d. (5 pts) Is f one-to-one? If not, explain why not.
- 3. Let $f(x) = \sqrt{x-2}$ and $g(x) = \frac{x-7}{x+5}$.
 - a. (5 pts) Write the function $\frac{f}{g}$. Do not simplify.
 - b. (5 pts) What is the domain of $\frac{f}{g}$?

- c. (5 pts) Write the function $f \circ g$. Do not simplify.
- d. (5 pts) What is the domain of $f \circ g$?

4. (5 pts) Simplify the difference quotient for $f(x) = 2x^2 - 3x$.

Bonus (5 pts) Pass to the limit as h approaches zero, and show me some calculus to go with #4.

5. (5 pts) Draw a picture for the difference quotient for $f(x) = \sqrt{x}$. Describe what the difference quotient represents, in words. Do not simplify your difference quotient. That's a bonus problem, later on.

- 6. Let $g(x) = -\sqrt{10 5x} + 7$.
 - a. (10 pts) Sketch the graph of g(x), by transforming the basic function $f(x) = \sqrt{x}$. I want to see 3 points labeled in the graph of g preferably starting with (0,0), (1,1) and (4,2) and track where those points are moved to after every step, as demonstrated in class.

- b. (5 pts) State the domain and range of g(x), based on your final graph.
- c. (5 pts) Find the x- and y-intercept of g(x), and label them, clearly, on the graph.

MAT 121-G11

7. (10 pts) Sketch the graph of $r(x) = 2(x-3)^2 - 5$ by transforming the basic function $f(x) = x^2$. I want to see 3 points labeled in the graph of f, and I want you to track where those points are moved to after every step, as demonstrated in class.

8. (5 pts) Find the *x*- and *y*-intercepts and add them to your final sketch, above. For *x*-intercept, leave final answer in simplified radical form.

9. (5 pts) Prove that $\frac{x+1}{x-3}$ is one-to-one.

10. (5 pts) Suppose y is jointly proportional to the square of x and the cube of z, and inversely proportional to u and the square root of w. Write an equation for this relationship between y, x, z, u, and w.

11. (5 pts) Explain why $x^2 + y^2 = 81$ does *not* define y as a function of x.

MAT 121-G11

Answer two of the following for **Bonus** (5 pts each)

B1: Simplify the difference quotient for the function $f(x) = \sqrt{2x}$. Then pass to the limit, as *h* approaches zero.

B2: Complete the square to re-write the function $h(x) = 5x^2 - 3x + 2$ in the form $a(x-h)^2 + k$. What is the vertex?

B3: What is the domain of
$$r(x) = \frac{x-5}{x^2-5x+6}$$
?

B4: What is the domain of
$$w(x) = \frac{x^{77} - 5x^{12} + 17x}{\sqrt{5 - 10x}}$$

B5: Prove that $g(x) = -\sqrt{10-5x} + 7$ is 1-to-1.

B6: Given $g(x) = -\sqrt{10-5x} + 7$, find what $g^{-1}(x)$ is. (Hint: $(-x+7)^2 = (x-7)^2$)

B7: Given $g(x) = -\sqrt{10-5x} + 7$, find the domain and range of $g^{-1}(x)$.