1. (10 pts) Is the relation $f=\{(3,-7),(4,-1),(2,5),(9,-1)\}$ a function? Explain in words.
2. (5 pts) What's the domain of f ?
3. (5 pts) What's the range of f ?
4. Let $f(x)=\frac{x+7}{x-2}$ and $g(x)=\sqrt{x+1}$.
a. (5 pts) What is the domain of f ?
b. (5 pts) What is the domain of g ?
c. Determine the following functions. You don't need to simplify. In fact, I recommend you do not.
i) $(5 \mathrm{pts}) f+g$
ii) $(5 \mathrm{pts}) f \circ g$
d. (5 pts) What is the domain of $f+g$? State your final answer in interval notation.
e. (5 pts) What is the domain of $f \circ g$? State your final answer in interval notation.
5. (5 pts) Simplify the difference quotient, $\frac{f(x+h)-f(x)}{h}$, for $f(x)=x^{2}-5 x$.

Bonus Pass to the limit, as $h \rightarrow 0$, on your answer to the above, so you can show me some calculus.
6. (5 pts) Explain to me why the equation $x^{2}+y^{2}=49$ does not define y as a function of x.
7. (5 pts) Draw me a picture showing what the difference quotient represents for the function $f(x)=\sqrt{x}$.

Bonus Simplify the difference quotient for $f(x)=\sqrt{x}$.
8. (10 pts) Answer one of the following:
a. Show that $f(x)=\frac{2}{3} x-7$ is one-to-one, algebraically.
b. If $f(x)=x^{2}-6 x+7$, for $x \geq 3$, what is $f^{-1}(x)$?.
9. (10 pts) Show that $f(x)=\frac{x+3}{x-1}$ is its own inverse. In other words, show that in this example, f and f^{-1} are the same, exact function! There are two ways to accomplish this:

1. By finding f^{-1}, directly.
2. By the definition of f^{-1}.
3. (10 pts) Suppose y varies jointly with m_{1} and m_{2}, and inversely with the square of r. Write an equation describing this situation.
