Evaluate the factorial expression $\frac{3!7!}{4!}$

Write down the first five terms of the sequence
$\left\{a_{n}\right\}=\left\{(-1)^{n}\left(\frac{n+3}{n+2}\right)\right\}$

Write out the sum
$\sum_{k=0}^{n} \frac{1}{3^{k}}$
d. Express the sum using summation notation.

$$
a+a r+a r^{2}+\cdots+a r^{n-1}
$$

Find the 8 th term of the geometric sequence $0.4,0.04,0.004, \ldots$

Find the sum $\sum_{k=1}^{\infty} 5\left(\frac{1}{4}\right)^{k-1}$

Don contributes $\$ 500$ at the end of each quarter to a tax sheltered annuity (TSA). What will the value of the TSA be after the $80^{\text {th }}$ deposit (after 20 years) if the annual rate of return is assumed to be 8% compounded quarterly?

What is the domain of $\frac{2 x-7}{x^{2}+5 x-36}$?

Find the zeros of $g(x)=x^{2}+5 x-36$ in 3 ways:

By factoring

By completing the square

By quadratic formula

Sketch the graph of $f(x)=\frac{2 x-7}{x^{2}+5 x-36}$. State the domain, asymptotes, holes, and intercepts.
Show them clearly labeled on your graph. Hint: Check your previous work.

The graph of a piecewise-defined function is given. Write its definition.

Use the Binomial Theorem to expand $(3 x-y)^{6}$. (Bonus, using Pascal's Triangle)

Sketch the graph of $h(x)=(x+5)^{2}-16$ by transforming the basic function $f(x)=x^{2}$.
Track the points $(-1,1),(0,0)$ and $(1,1)$ in the original graph of f as you transform it into h. Show all intercepts.

Sketch the graph of $h(x)=-2 \cdot 4^{5-x}+6$ by transforming the basic function $f(x)=4^{x}$. Track the points $(-1,1 / 4),(0,1)$, and $(1,4)$ in the original graph of f as you transform it into h. Show any intercepts and asymptotes, if any.

Sketch the graph of $h(x)=-2 \cdot \sqrt{5-x}+6$ by transforming the basic function $f(x)=\sqrt{x}$. Track the points $(0,0),(1,1)$, and $(4,2)$ in the original graph of f as you transform it into h. Show all intercepts and asymptotes, if any.

What is the domain of $\ln \left(\frac{2 x-7}{x^{2}+5 x-36}\right)$? (Hint: Solve $\frac{2 x-7}{x^{2}+5 x-36}>0$.)

Let $f(x)=x^{2}+5$.
The difference quotient is $\frac{f(x+h)-f(x)}{h}$. Why can't you let $h=0$?

Simplify the difference quotient.

Can you let $h=0$ AFTER you simplify? If so, what do you obtain?

Find the sums:
$\sum_{n=1}^{20}(1.02)^{n-1}$
$\sum_{n=1}^{\infty} 3\left(\frac{1}{2}\right)^{n-1}$

Find all the (real and nonreal) zeros of $f(x)=x^{5}+5 x^{4}-7 x^{3}-43 x^{2}-8 x-48$. Use all the zeros to write $f(x)$ as the product of linear factors. Be very careful with your arithmetic! You may want to find the zeros on scratch paper before showing your work on this sheet.

What is the domain of $\sqrt{\frac{x-2}{(x+3)^{2}(x-7)^{3}}}$? (Hint: Solve $\frac{x-2}{(x+3)^{2}(x-7)^{3}} \geq 0$

The half-life of radioactive Millsium is 85 years. How old is a sample of Millsium if the sample decayed from 100 grams to 12.5 grams?

