Find the first 5 terms of the following sequences.

1. $a_{n}=\frac{(-1)^{n=1}}{n+1}$
2. $b_{n}=\frac{2^{n}}{(n-1)!}$
3. Write a formula for the nth term of each infinite sequence.
i) $9,11,13,15$
ii) $1,-\frac{1}{8}, \frac{1}{27},-\frac{1}{64}, \ldots$.
4. Find the sum of the following series
$\sum_{i=0}^{6} i(i-2)(i-3)$
5. Write the following series in summation notation.
$\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}$
6. Find the sum of each finite geometric series by using the formula for S_{n}. You can check you answer by actually adding up the sums.
$9+3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}$
7. Write the infinite geometric series in summation notation, then find the sum, if possible. If not possible, state why.
i) $0.9+0.09+0.009+\cdots$
ii) $1.2-2.4+4.8-9.6+\cdots$
iii) (already in summation notation)
$\sum_{i=1}^{\infty} 27(0.1)^{i}$
