Exam

Name \qquad

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Solve the system by inspecting the graph of the equations.

1) $x+2 y=6$

$$
3 x-3 y=-27
$$

Solve the system by substitution.

$$
\text { 2) } \begin{aligned}
x+y & =3 \\
x-y & =-7
\end{aligned}
$$

3) $5 x-3 y=25$
$8 x+4 y=84$

Solve the system by addition.

$$
\text { 4) } x+8 y=-24
$$

$$
-5 x+9 y=-27
$$

5) $8 x+3 y=-57$
$16 x=-59-6 y$
6) $\frac{1}{8} x+\frac{1}{6} y=6$

$$
\frac{3}{8} x+\frac{1}{2} y=19
$$

Solve the problem.

7) There were 31,000 people at a ball game in Los Angeles. The day's receipts were $\$ 214,000$.
8) \qquad How many people paid $\$ 13$ for reserved seats and how many paid $\$ 4$ for general admission?

Determine whether the given point is in the solution set to the given system.

$$
\text { 8) } \begin{gathered}
(2,9,-4) \\
2 x-5 y-9 z=-5 \\
x+y+z=7 \\
3 x-y+5 z=35
\end{gathered}
$$

9) $(-2,6,-1)$
10)
11) \qquad

$$
-x+3 y+4 z=16
$$

$$
3 x+2 y-z=7
$$

$$
4 x-y+3 z=-17
$$

Solve the system of equations.

$$
\text { 10) } \begin{gathered}
x+y+z=8 \\
x-y+2 z=9 \\
3 x+y+z=16
\end{gathered}
$$

11) $x+2 y+5 z=20$

$$
2 y+4 z=22
$$

10) \qquad

$$
\text { 12) } \begin{aligned}
& 5 x-7 y+9 z=-1 \\
& 7 x+5 y-3 z=-2 \\
& 15 x-21 y+27 z=-3
\end{aligned}
$$

11) \qquad

$$
\mathrm{z}=3
$$

13) $3 x+y=-2$
14)

$3 x-z=6$
$y+z=-8$

Use a system of equations to find the parabola of the form $y=a x^{2}+b x+c$ that goes through the three given points.
14) $(-4,-35),(-2,-7),(-3,-18)$

Solve the problem.
15) A $\$ 104,000$ trust is to be invested in bonds paying 6%, CDs paying 5%, and mortgages
15)
14) \qquad
paying 8%. The bond and CD investment together must equal the mortgage investment. To earn a $\$ 7050$ annual income from the investments, how much should the bank invest in bonds?
16) The sum of a student's three scores is 228 . If the first is 11 points more than the second, and the sum of the first two is 21 more than twice the third, what was the first score?
17) A company makes 3 types of cable. Cable A requires 3 black, 3 white, and 2 red wires. B requires 1 black, 2 white, and 1 red. C requires 2 black, 1 white, and 2 red. They used 95 black, 100 white and 90 red wires. How many of each cable were made?

Solve the system.

$$
\text { 18) } \begin{gathered}
x^{2}+y^{2}=25 \\
x+y=-7
\end{gathered}
$$

18) \qquad
19) $x y-x^{2}=-20$
$x-2 y=3$
20) \qquad
21) $x^{2}+y^{2}=36$

$$
x^{2}-y^{2}=36
$$

Graph the solution set of the system.

21) $2 x+y \leq 4$
$x-1 \geq 0$

22) \qquad
23) $x+2 y \geq 2$
$x-y \leq 0$

24)
25) $y \leq-x^{2}-6 x-4$
26)

$y \geq x^{2}+6 x+4$

24) $(x+2)^{2}+(y-4)^{2} \geq 9$
24)

Write the augmented matrix for the system.
25) $6 x+8 y+6 z=76$

$$
7 x-2 y+7 z=66
$$

$$
6 x+2 y+3 z=40
$$

26)
$3 x \quad+5 z=8$
$9 y+5 z=71$
$2 x+2 y+7 z=16$
$[\mid]$
25)
26) \qquad

Solve the system using Gaussian elimination.

$$
\text { 27) } \begin{aligned}
6 x+3 y & =-9 \\
5 x+6 y & =3
\end{aligned}
$$

27)

$$
\text { 28) } \begin{gathered}
6 x-7 y=-8 \\
12 x-14 y=2
\end{gathered}
$$

$$
\text { 29) } \begin{gathered}
4 x-6 y-6 z=6 \\
4 x+5 y-3 z=3 \\
12 x-18 y-18 z=5
\end{gathered}
$$

Find the sum, if possible.

$$
\text { 30) }\left[\begin{array}{rr}
-3 & -7 \\
-1 & 5 \\
-1 & 5
\end{array}\right]+\left[\begin{array}{rr}
9 & -8 \\
6 & 1 \\
-9 & -7
\end{array}\right]
$$

30)
31) \qquad

Find the indicated matrix.

$$
\text { 31) Let } C=\left[\begin{array}{r}
6 \\
-2 \\
10
\end{array}\right] \text {. Find } \frac{1}{2} C \text {. }
$$

31) \qquad

Solve the system of equations corresponding to the given matrix equation.
32) $\left[\begin{array}{r}x+y+z \\ -x-y+z \\ 2 x+y-2 z\end{array}\right]=\left[\begin{array}{r}11 \\ -17 \\ 25\end{array}\right]$
32) \qquad
33. $\left[\begin{array}{cc}6 & -7 \\ 3 & 5\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}3 \\ 4\end{array}\right]$

Finally, solve this system of nonlinear equations:
$y=8^{x}$
$x=\log _{2}(2 y)$
Do it two ways:

1. Plug $x=\log _{2}(2 y)$ in for x in the first equation. Solve the result for y.
2. Write the $2^{\text {nd }}$ equation in exponential form, and then substitute $y=8^{x}$ from the first equation in for y in the $2^{\text {nd }}$ equation. This was Cassie's suggestion in class.

The lesson I want you to gain from this is that there's more than one road to Rome, and some roads are easier. You should be able to pick a couple different roads, and take the smoothest one.

Can you suggest another method (or two?).

