1. Graph $f(x)=7^{x}$
2. Graph $g(x)=2 \cdot 7^{x-1}$ - 3 by transforming the basic function $f(x)=7^{x}$

Bonus Find the inverse of the function $g(x)=2 \cdot 7^{x-1}-3$
3. Graph $h(x)=\log _{7}(x+2)$
4. Solve $\log _{5}(x-4)+\log _{5}(x+2)=\log _{5}(7)$ for x.

Bonus Solve for $t: \quad A=P\left(1+\frac{r}{m}\right)^{m t}$.
5. Solve $2 \cdot 7^{x-1}-3=0$ for x. Give an exact answer and then round to 4 decimal places. If you use this to supply the x-intercept for the appropriate graph on Page 1, it's worth a couple bonus points.
6. Solve $7^{x-3}=5^{x}$ for x. Give an exact answer and then round your answer to 4 decimal places.
7. Millsium has a half-life of 50 years, if I'm lucky. What's its decay rate?
8. Using your work from the previous problem, a very old sample of radioactive Wieligminium decayed from 20 grams to 3 grams. To the nearest day, how old is the sample?
9. Solve $(\log (x))^{2}=\log \left(x^{2}\right)$ for x.
10. What's the future value of $\$ 5,000$ invested at 7% APR, if interest is compounded...
a. ... monthly?
b. ... daily?
c. ... continuously?

