\qquad

Read and follow instructions.

1. (10 pts) Form a polynomial in factored form with real coefficients with the given zeros and degree. Do not expand the polynomial.

Zeros: -2, multiplicity 1; 5, multiplicity 2; $7+2 i$, multiplicity 1 , Degree 5.
2. (10 pts) Expand $(x-3+2 i)(x-3-2 i)$
3. (10 pts) Use long division to find the equation of the oblique asymptote for the rational function $f(x)=\frac{5 x^{3}+3 x^{2}-4}{x^{2}-3}$.
4. Solve the inequalities:
a. (5 pts) $4(x-1)^{2}(x-2)(x-4)^{3} \geq 0$
b. (5 pts) $\frac{4(x-1)^{2}}{(x-2)(x-4)^{3}} \geq 0$
5. (10 pts) Given $f(x)=x^{4}-4 x^{3}+4 x^{2}+4 x-5 \quad$ has rational zeros $x= \pm 1$, find all zeros of f and split f into linear factor, that is, factor f over the complex numbers.

