\qquad

1. $(10 \mathrm{pts}) f=\{(1,-1),(2,4),(3,2),(4,3)\}$
a. Function? (Yes/no)
b. If not, why not?
c. 1-to-1? (Yes/no)
d. If not, why not?
e. What's the domain?
f. What's the range?
2. (10 pts) For each of the following graphs, determine if the relation is a function. If it is a function, state whether or not it is 1-to-1.

Is it a function?

Is it 1-to-1?
Domain?
Range?

Is it a function?
Is it 1-to-1?
Domain?
Range?
3. (10 pts) Let $f(x)=x^{2}-7$. Simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$.
4. (5 pts) Determine whether or not $\sqrt[3]{y}+x=7$ defines y as a function of x. If it does not, show/explain why not. (Solve for y and look at how many solutions you get.)
5. Let $f(x)=\frac{x+2}{x-11}$ and $g(x)=\sqrt{x+8}$.
a. (5 pts) What is the domain of f ?
b. (5 pts) What is the domain of g ?
c. (5 pts) Find $(f \circ g)(x)$. (Do not simplify.)
d. (5 pts) What is the domain of $(f \circ g)(x)$?

Still working with $f(x)=\frac{x+5}{x-6}$ and $g(x)=\sqrt{x+8}$.
e. Determine each of the following functions (without simplifying) and state the domain of each in interval notation.
i. $\quad(5 \mathrm{pts})(f+g)(x)$
ii. (5 pts) $\left(\frac{f}{g}\right)(x)$
6. (5 pts) Answer one of the following:
a. Show that $f(x)=\frac{x+5}{x-11}$ is 1-to-1, algebraically.
b. Let $f(x)=\frac{x+5}{x-11}$. Find $f^{-1}(x)$.
7. (5 pts) The graph of f is given. Sketch the graph of f^{-1}.

8. (5 pts) If y varies jointly as x and w and inversely with the cube of r, write the equation describing this relationship. What is y if $x=3, w=2$, and $r=7$?
9. Graph each of the following functions using techniques of shifting, compressing, stretching, and/or reflecting. Start with the graph of the basic function and show all stages in separate sketches. Track 3 key points through the transformations.
a. (5 pts) $g(x)=2|x+5|+4$
\#9, continued... Graph using transformations.
b. (5 pts) $h(x)=\frac{1}{x-2}+3$
10. Solve the absolute value inequalities:
a. (5 pts) $|2 x-3|-1>5$
b. (5 pts) $|2 x-3|-1 \leq-5$

