This is our final learning opportunity together, and I'm hoping to take full advantage. Read the questions carefully. Sometimes, you can earn points on a problem by knowing that you did it wrong and explaining how you know and what you're trying to accomplish, and how you're going about it.

1. Solve the equation $x^{2}-3 x-10=0$ in three different ways:

part a (15 pts) Factoring

part b (15 pts) Completing the square
part c (15 pts) Quadratic formula
2. (15 pts) Sketch the graph of $f(x)=x^{2}-3 x-10$. Include vertex, intercepts and be true to its shape. (No zig-zagging to make it go through calculated points.)
3. Solve the absolute value inequality. Give your answer in set-builder and interval notation.
part a (10 pts) $|7 x+2|<4 \quad$ part b (10 pts) $|2 x-7| \geq 4$
4. Let $f(x)=\sqrt{x-18}$ and $g(x)=x^{2}+3 x-10$
part a (10 pts) What's the domain of $f(x)$? Give the answer in set-builder and interval notation.
part b (10 pts) Determine $(f \circ g)(x)$. Simplify your answer.
part c (10 pts) What's the domain of $(f \circ g)(x)$? Give your answer in setbuilder and interval notation.
5. (10 pts) What is the domain of $h(x)=\sqrt{(x-2)^{3}(x+1)(x-4)^{2}}$?
6. (10 pts) What is the domain of $\sqrt{\frac{(x-2)^{3}(x+1)}{(x-4)^{2}}}$? The hard part's done...
7. (10 pts) Use synthetic division to find $f(2)$ for $f(x)=x^{4}-5 x^{3}-3 x^{2}+43 x-6$
8. (10 pts) Determine a, r and n for the finite geometric series $5+15+45+\ldots+10935$

Then use a, r, and n to determine the sum by the formula $\sum_{k=1}^{n} a \cdot r^{k-1}=a\left(\frac{1-r^{n}}{1-r}\right)$.
9. (10 pts) How many ways can you pick 3 people from a group of 20 people to do a job for you? CHOOSE!
10. (10 pts) How many ways can you pick 3 people from a group of 20 people and then assign each of the 3 people to a different job? CHOOSE AND ARRANGE!
11. (10 pts) Use Pascal's Triangle (Binomial Theorem!) to help you expand $(2 x-3)^{5}$. Expanding without using this technique will not earn any points.
$A=P\left(1+\frac{r}{m}\right)^{m t}=P(1+i)^{n}$

$$
F V=S=R\left(\frac{(1+i)^{n}-1}{i}\right)
$$

Previous semesters I used "FV" for future value of an annuity. I used 'S' this semester.
12. (10 pts) What's the future value, in 10 years, of $\$ 10,000$ deposited into a savings account, earning 4.3\% annual percentage rate, compounded daily?
13. (10 pts) An annnuity consists of monthly payments of $\$ 407$ into an account earning 6% annual interest, compounded monthly, for 6 years. There are two ways to ask this question:

First way: How much does JG Wentworth feel that this annuity is worth? "I have a long-term settlement but I need cash NOW!"
Second way: If the annuity described is actually your monthly loan payments, how much did you borrow in the first place?

