This is our final learning opportunity together, and I'm hoping to take full advantage. Read the questions carefully. Sometimes, you can earn points on a problem by knowing that you did it wrong and explaining how you know and what you're trying to accomplish, and how you're going about it.

1. Solve the equation $x^{2}-2 x-15=0$ in three different ways:
part a (10 pts) Factoring
part b (15 pts) Completing the square
part c (15 pts) Quadratic formula
2. Solve the absolute value inequality. Give your answer in set-builder and interval notation.
part a
(10 pts) $|7 x+2| \geq 4$
part b (10 pts) $|2 x-7|<4$
3. Let $f(x)=\sqrt{x-14}$ and $g(x)=x^{2}-3 x-14$
part a (15 pts) What's the domain of $f(x)$? Give the answer in set-builder and interval notation.
part b $\quad(15 \mathrm{pts})$ Determine $(f \circ g)(x)$. Simplify your answer.
part c (5 pts) What's the domain of $(f \circ g)(x)$? Give your answer in set-builder and interval notation.
4. (15 pts) Solve $(x-2)^{3}(x+1)(x-4)^{2}>0$. Give the solution set in interval notation.
5. (10 pts) What is the domain of $h(x)=\sqrt{(x-2)^{3}(x+1)(x-4)^{2}}$?
6. (10 pts) What is the domain of $\sqrt{\frac{(x-2)^{3}(x+1)}{(x-4)^{2}}}$? The hard part's done...
7. (10 pts) Use synthetic division to find $f(3)$ for $f(x)=x^{4}-5 x^{3}-3 x^{2}+43 x-60$
8. (10 pts) Determine a, r and n for the finite geometric sequence $2, \frac{4}{5}, \frac{8}{25}, \ldots, \frac{256}{78125}$

Use a, r, and n to determine the sum by the formula $\sum_{k=1}^{n} a \cdot r^{k-1}=a\left(\frac{1-r^{n}}{1-r}\right) \cdot \mathrm{A}$ fractional answer is better, but I'll give you most of the points if you provide a decimal answer that is accurate to 4 decimal places.
9. (10 pts) Find the sum of the infinite series $\sum_{k=1}^{\infty} 4 \cdot\left(\frac{3}{4}\right)^{k-1}=4+4 \cdot \frac{3}{4}+4 \cdot\left(\frac{3}{4}\right)^{2}+\ldots \ldots$

Finance Formulas:

$$
A=P\left(1+\frac{r}{m}\right)^{m t}=P(1+r)^{n} \quad F V=R\left(\frac{(1+i)^{n}-1}{i}\right)
$$

10. (10 pts) What's the future value, in 10 years, of $\$ 10,000$ deposited into a savings account, earning 4.3\% annual percentage rate, compounded daily?
11. (10 pts) An annnuity consists of monthly payments of $\$ 600$ into an account earning 8.4% annual interest, compounded monthly, for 10 years. There are two ways to ask this question:

First way: How much does JG Wentworth feel that this annuity is worth?
Second way: If the annuity described is actually your monthly loan payments, how much did you borrow in the first place?

Bonus (10 pts) Use Pascal's Triangle (Binomial Theorem!) to help you expand $(x-2)^{4}$. Expanding without using this technique will not earn any points.
12. (15 pts) Sketch the graph of $g(x)=3 \cdot 2^{2 x-4}-5$ by transforming the basic function $f(x)=2^{x}$. Show x - and y-intercepts.

