1. (10 pts) Form a polynomial in factored form with real coefficients with the given zeros and degree. Please do not expand the polynomial.

Zeros: -2 , multiplicity 3; -5 , multiplicity 2 . Degree 5.
2. (10 pts) Expand $(x-3+2 i)(x-3-2 i)$
3. (10 pts) Use synthetic division to find $P(3)$ if $P(x)=2 x^{5}-2 x^{2}+4 x-1$.
4. (10 pts) Divide $f(x)=3 x^{4}-x^{3}+3 x^{2}-4$ by $d(x)=x^{2}-2$. Then write the result in the form Dividend $=$ Divisor \cdot Quotient + Remainder .
5. Solve the inequalities:
a. $(10 \mathrm{pts})(x-1)^{2}(x-2)(x-4)^{3} \leq 0$
b. $(10$ pts $) \frac{(x-1)^{2}(x-4)^{3}}{(x-2)} \leq 0$
c. (5 pts) What is the domain of $f(x)=\sqrt{\frac{(x-1)^{2}(x-4)^{3}}{(x-2)}}$?
d. (5 pts) What is the domain of $f(x)=\log _{3}\left(\frac{(x-1)^{2}(x-4)^{3}}{(x-2)}\right)$?
6. (15 pts) Find all real zeros of $f(x)=x^{5}-4 x^{4}+2 x^{3}+14 x^{2}-23 x+10$. Factor $f(x)$ over the real number field. This will likely entail an irreducible quadratic factor that can not be split over the real number field
7. (15 pts) Use your work from \#6 to find any nonreal zeros of $f(x)$. Then write $f(x)$ as the product of linear factors. That is, break $f(x)$ all the way down, with the nonreal zeros you find (plus the real zeros you already found from \#6).

